
DAW Plugins for Web Browsers
 Jari Kleimola

Dept. of Media Technology
School of Science, Aalto University
Otaniementie 17, Espoo, Finland

jari.kleimola@aalto.fi

ABSTRACT
A large collection of Digital Audio Workstation (DAW) plugins is
available on the Internet in open source form. This paper explores
their reuse in browser environments, focusing on hosting options
that do not require manual installation. Two options based on
Emscripten and PNaCl are introduced, implemented, evaluated,
and released as open source. We found that ported DAW effect
and sound synthesizer plugins complement and integrate with the
Web Audio API, and that the existing preset patch collections
make the plugins readily usable in online contexts. The latency
measures are higher than in native plugin implementations, but
expected to reduce with the emerging AudioWorker node.

Categories and Subject Descriptors
Information systems~Browsers, Applied computing~Sound and
music computing, Software and its engineering~Real-time systems
software, Software and its engineering~Reusability

General Terms
Algorithms, Performance, Design, Standardization

Keywords
web browser, DAW plugin host, PNaCl, Emscripten, LADSPA,
DSSI, VST

1. INTRODUCTION
HTML5 and related technologies continue to expand the browser
sandbox. In aural domain, <audio> element provides a consistent
application programming interface (API) and user experience for
audio playback in web browsers. Web Audio API specifies further
extensions for audio synthesis, processing, analysis and routing.
The current API [1] defines 18 general purpose audio source,
processing, and sink nodes. Each node implements a well-defined
DSP algorithm in native form, and exposes its parameters via
JavaScript API. Control rate parameters support automation and
manual control using user interface (UI) elements, or external
controller devices via the emerging Web MIDI API [7]. Nodes are
often interconnected through audiorate parameter ports to form
higher level digital signal processing (DSP) algorithms.

However, the set of native Web Audio API nodes is insufficient to
cover all needs of highly focused DSP applications. Since the
speed of contemporary JavaScript engines enable audiorate
algorithm implementations in script, Web Audio API introduces a

ScriptProcessor node (or its future AudioWorker reincarnation)
for custom DSP development in JavaScript. Unfortunately,
scripting support leads to inevitable performance penalties, which
can be mitigated by using Mozilla’s high performance asm.js [6]
and Emscripten [12] virtual machine as an optimized runtime
platform on top of JavaScript. Google’s Portable Native Client
(PNaCl) technology [4] provides another solution for accelerated
custom DSP development. Instead of compiling C/C++ source
code into a subset of JavaScript as in Emscripten, PNaCl employs
bitcode modules that are embedded into the webpage, and
translated into native executable form ahead of runtime.
Emscripten/asm.js and PNaCl technologies work directly from the
open web and do not require manual installation.

Since Emscripten and PNaCl are both based on C/C++ source
code compilation, reuse of existing codebases in web platforms
comes as an additional benefit. This is especially interesting for
the web audio community: most open source DSP libraries are
implemented in C/C++ and may therefore be used to extend the
currently available native Web Audio API node set. Furthermore,
a wealth of digital audio workstation (DAW) plugins also exists in
open source. The reuse of DAW plugins would afford integration
of high quality virtual effects devices and sound synthesizers in
the Web Audio API node graph. Lower level DSP libraries and
higher level DAW plugins would thereby promote the use of
browsers as professional audio platforms.

This work focuses on enabling DAW plugins in web browsers.
The plugins are hosted either as PNaCl or Emscripten modules,
and integrated into the Web Audio API rendering pipeline using a
ScriptProcessor node (SPN) backend. An alternative PNaCl
hosting option routes audio directly into to the browser audio
rendering pipeline for improved latency. Both hosting options are
explored with detailed implementations, and evaluated in terms of
latency and computational load. The tangible contributions of this
paper are:

• a browser-based DAW plugin host. A web page may embed
or load the plugins dynamically, control their parameters, and
integrate them into the Web Audio API rendering pipeline.

• a collection of browser-hosted DAW plugins to i) complement
the current native Web Audio API node set, and ii) to provide
semantically higher level audio effect units and sound
synthesizers for browser platforms.

The rest of this paper is structured as follows. Section 2 provides a
look at related research. Sections 3 and 4 provide implementations
and evaluations of PNaCl and Emscripten based plugin hosting
options. Their implications are discussed in Section 5, and finally,
Section 6 concludes. A demo page1 and source code2 are available
in public domain.

1 https://mediatech.aalto.fi/publications/webservices/dawplugins
2 https://github.com/jariseon/webdawplugins

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1st Web Audio Conference (WAC), January 26–27, 2015, Paris, France.

2. RELATED WORK
2.1 Native Plugin Architectures
The first affordable digital hardware synthesizers and effects
devices started to appear at the market in the early 1980's. In mid
1990's off-the-shelf desktop PCs were already powerful enough to
perform real-time audio effects processing in software, and
towards the end of the century, software sound synthesizers
emerged as virtual re-incarnations of their hardware counterparts.
The software effects units and instruments were either standalone
applications or plugins inside a DAW host. The host capabilites
were exposed as proprietary plugin APIs, including Apple's Audio
Units (AU), Microsoft's DirectX instruments (DXi), and
Steinberg's cross-platform Virtual Studio Technology (VST). In
Linux, audio effects units were first interfaced with Linux Audio
Developer's Simple Plugin API (LADSPA) [8], which was later
extended with MIDI and Open Sound Control (OSC) support to
give rise to the Disposable Soft Synth Interface (DSSI) [5]. The
evolution progressed further into LADSPA v2 (LV2), which
addresses the limitations of LADSPA and DSSI through an
extensible API. This paper focuses on LADSPA, DSSI and VST2
plugin APIs.

2.2 Web Audio
At the start of new millennium, Java and Flash plugins enabled
real-time audio processing and sound synthesis in web browsers.
More recently, HTML5 <audio> element and the W3C Web
Audio [1] and MediaStream JavaScript APIs have been adopted
as standards for web audio development. Several third party
frameworks have also emerged to increase the functionality of the
platform. The frameworks rely either on native Web Audio API
nodes (for increased performance), or use the ScriptProcessor
node as a backend (for increased flexibility). The libraries and
frameworks of the former category include tuna3 and
Pedalboard.js4, which model guitar effects, while a dual oscillator
analog synth5 demonstrates a sound synthesizer built on top of
TemplateSynth framework. The latter category includes
Flocking6, WAAX7 [3] and Gibberish [11]. Flocking implements
a set of JavaScript unit generators that are connected into synths
and synthdefs similar to those in the SuperCollider environment.
WAAX abstracts audio graphs as node-like units with condensed
parameter access syntax. Gibberish provides low and high level
unit generators with single sample processing model, and attempts
to optimize the code with run-time code generation reminiscent of
asm.js. The present paper achieves increased flexibility of SPN
backends, but also gains improved performance by exploiting
PNaCl and Emscripten accelerator technologies.

2.3 Accelerator Technologies
Google’s native client (NaCl) provides a sandboxed environment
for untrusted code execution in web browsers [4]. It defines a set
of secure APIs that are accessible from JavaScript or C/C++ code.
The API includes partial support for standard clib functions and
other common libraries such as pthreads, and affords direct, albeit
restricted low level access to the audio rendering pipeline of the
browser. NaCl modules require manual installation from Chrome
Web Store. In contrast, Portable native client (PNaCl) enables

3 https://github.com/Dinahmoe/tuna
4 http://dashersw.github.io/pedalboard.js/
5 http://webaudiodemos.appspot.com/midi-synth/
6 https://github.com/colinbdclark/Flocking
7 http://hoch.github.io/WAAX/

extension loading directly from the open web without manual
installation [4]. PNaCl defines an instruction-set independent
layer on top of NaCl. Its distribution format is low-level virtual
machine (LLVM) bitcode, which is translated into native code at
client side before execution. PNaCl thus enlarges the conventional
browser sandbox with third party modules that achieve high
performance while still remaining secure.

PNaCl modules are developed in C/C++. They are compiled and
linked into LLVM bitcode by taking advantage of optimization
strategies available in the toolchain8. All features of underlying
NaCl API are available in PNaCl. For instance, JavaScript code
can communicate with the PNaCl bitcode using asynchronous
messages that carry marshalled payload. PNaCl thus allows reuse
of previously written C/C++ libraries straight from the JavaScript
front end code.

Mozilla’s Emscripten [12] achieves a similar goal. However,
instead of targeting LLVM bitcode, Emscripten toolchain takes an
additional step: the intermediate LLVM assembly is optimized in
compliance with contemporary JavaScript engines, and finally
expressed in a high performance subset of JavaScript defined by
asm.js [6]. The outcome is embedded inside a virtual machine also
implemented in asm.js. Since the Emscripten target is JavaScript
compliant, it can be downloaded and interpreted in any modern
JavaScript engine.

Both accelerator techniques have already been used in web audio
contexts. For instance, Faust defines a functional DSP language
and a compiler targeting various DSP frameworks [10]. One of
the targets produce vanilla C++ code with minimal boilerplate.
This form has been successfully transformed into SPN compliant
unit generators using Emscripten [2]. Furthermore, the Csound
environment has been implemented in both Emscripten and
PNaCl form [9], although the PNaCl implementation does not
integrate with the Web Audio API. With minor modifications, the
DAW plugin host produced in this work may also host the
minimal boilerplate Faust unit generators as PNaCl modules, and
enable the PNaCl Csound implementation to be integrated with
the Web Audio API node graph.

3. IMPLEMENTATION
The primary goal of this work was to provide web compliant ports
of LADSPA, DSSI and VST plugins, and enable their hosting in
web browsers straight from the open web, i.e., without any client
side installation requirements. The secondary goal was to strive
towards high performance, and if possible, minimum latency by
using PNaCl and Emscripten as implementation strategies.

3.1 Porting
The porting of existing DAW plugins involves (1) compiling the
original plugin code into a PNaCl or Emscripten module, and (2)
wrapping the module into a JavaScript class. The wrapper class
integrates with Web Audio API, Web MIDI API, and HTML5
compliant UI. The wrapper also supports parameter and preset
handling.

The compilation part (1) of LADSPA plugins is straightforward.
The only issues requiring modifications in the original source
code involved dynamic link library entry and exit points (_init
and _fini), which conflicted with the PNaCl framework. These
issues were resolved by simply compiling the source as C++
instead of C, or by renaming the conflicting entries. DSSI and

8 https://developer.chrome.com/native-client/overview

VST plugin compilation is more involved because of increased
functionality. For instance, the code for UI and preset handling
needs to be ripped off and re-implemented in the JavaScript
wrapper. VST also allows several entry point formats, which was
resolved with preprocessor directives.

This work provides a proof-of-concept collection of DAW plugin
ports. The LADSPA collection contains several effects processors
to complement the Web Audio API node set. The DSSI collection
includes Hexter (virtual Yamaha DX7 FM synthesizer clone),
Xsynth (dual oscillator virtual analog emulation), and a hybrid
WhySynth instrument. The VST2 collection includes AZR3
(Hammond organ emulation), mdaJX10 (another dual-oscillator
virtual analog), and a sortiment of effects units. All synthesizers
come with presets for instant use. Links to the original plugins are
available in the demo page1.

3.2 JavaScript Wrappers
To simplify the wrapping part (2), the host produced in this work
provides boilerplate for audio and MIDI message routing, generic
UI construction, bank and patch uploads, and plugin parameter
accessors. Code Listing 1 demonstrates the proposed JavaScript
API. The example sets up the plugin host (line 2), and loads a
Hexter DSSI plugin asynchronously (line 9). Lines 3-8 implement
a callback which is invoked once the plugin is ready. The callback
first uploads a bank (line 4), selects the first patch of the bank
using MIDI (line 5), and sets main volume (line 6). Line 7 inserts
the plugin into the Web Audio API node graph, and finally, line 8
connects the plugin into a Web MIDI API input port. The
synthesized audio buffers are routed into the node graph via an
embedded ScriptProcessor node (SPN). An alternative PNaCl
routing option, plug.setParam(“directOut”,true), sends the
audio buffers directly to the browser audio rendering pipeline for
reduced latency. The complete API documentation is available in
the source code repository2.

Code Listing 1
1	 var	 actx	 =	 new	 AudioContext();	
2	 var	 host	 =	 new	 DAWPluginHost(actx);	
3	 host.onpluginready	 =	 function	 (plug)	 {	
4	 	 	 	 plug.setBank(plug.factoryBank,	 0);	
5	 	 	 	 plug.sendMidi(0xC0,	 0,	 0);	
6	 	 	 	 plug.setParam(“Volume”,	 0.75);	
7	 	 	 	 plug.connect(actx.destination);	
8	 	 	 	 midiIn.onmidimessage	 =	 plug.onMidi.bind(plug);	 }	
9	 var	 synth	 =	 new	 Hexter(host);	

Code Listing 2 demonstrates a simple wrapper implementation.
As can be seen, the functionality of Code Listing 1 is achieved in
large part by just relying on the boilerplate code, i.e., using
standard prototypal inheritance from the DAWPlugin class (not
depicted). The wrappers typically implement logic for custom
preset parsing and UI implementation. In Code Listing 2, Line 2
installs an override for the setBank method invoked from line 4 of
Code Listing 1. Hexter accepts original Yamaha DX7 sysex
dumps, and uses the override to strip MIDI headers from the patch
dump before passing the bank to the base class. Line 3 installs an
override to extract the patch name from a custom patch structure.
Finally, line 4 loads and creates the plugin, eventually triggering
the onpluginready callback in Code Listing 1. The second
parameter of createPlugin instructs the host to either load a
PNaCl module (as indicated by the “.nmf” tail), or an Emscripten
module (indicated by “.js”). The third parameter describes the
index of the plugin in a LADSPA or DSSI bundle: LADSPA and
DSSI modules are actually plugin libraries which may contain one

or more distinct plugin implementations. The third parameter is
unused in VST contexts.

Code Listing 2
1	 Hexter	 =	 function	 (host)	 {	
2	 	 	 this.setBank	 =	 function	 (bank,i)	 {	 ...	 }	
3	 	 	 this.getPatchName	 =	 function	 (patch)	 {	 ...	 }	
4	 	 	 host.createPlugin(this,	 “hexter.nmf”,	 0);	 };	

The complexity behind Code Listings 1 and 2 is hidden inside
DAWPluginHost and DAWPlugin classes. DAWPluginHost is itself a
thin wrapper that converges the PNaCl and Emscripten loading
options into a single API (PNaCl modules are injected as <embed>
and Emscripten modules as <script> tags). It also contains preset
loading and parsing logic, including support for VST and AU
format banks and patches.

DAWPlugin provides a bridge between the wrapper and the ported
plugin implementation. The interface is implemented as RESTful
asynchronous messaging in the PNaCl case, and as wrapped
function calls in the Emscripten case. DAWPlugin is responsible
for the creation of the plugin instance, SPN backend management,
audio buffer routing between the node graph and the hosted
plugin, MIDI routing, and uploading of preset banks, patches, and
parameters. The generic UI support is built on top of DAWPlugin
as well.

3.3 PNaCl Host
The block diagram of PNaCl form DAW plugin hosting is shown
in Figure 1. The host resides partly on JavaScript side (see Section
3.2), and partly on PNaCl side. The PNaCl side consists of
PDAWHost module instance, and the shared DAWHost, DAWPlugin
and DAWBundle classes. PDAWHost provides the asynchronous
communication end point for the JavaScript wrapper, and parses
and marshalls the received messages into a format that is common
to both PNaCl and Emscripten implementations. Audio buffers
are created at the JavaScript side and transferred as ArrayBuffers.
Audio needs to be double-buffered because of thread boundary
between JavaScript wrapper and PNaCl module, and because of
the resulting asynchronous messaging paradigm. The marshalled
messages are handed over to the DAWHost class.

DAWHost, DAWPlugin and DAWBundle classes implement the actual
hosting functionality. DAWHost manages the plugin instances, and
routes the received messages to targeted plugins, and back to
PDAWHost if requested. DAWPlugin and DAWBundle are abstract
classes that define a common API for different plugin formats.

Figure 1. DAW plugins as PNaCl modules.

DAWPlugin class is inherited by LadspaPlugin, which again is a
superclass of DSSIPlugin class. DAWPlugin provides a base for
VSTPlugin as well. DAWPlugin initializes and activates plugin
instances, provides parameter accessors, manages input and
output audio buffers, and provides an entry point to the process
method that contains the actual DSP code. DSSIPlugin and
VSTPlugin contain additional methods for MIDI input and preset
handling.

DAWBundle is inherited by LadspaBundle, which in turn is a
superclass of DSSIBundle. The bundle classes initialize the plugin
library, collect descriptors of each contained plugin type into a
JSON string that is returned back to the JavaScript side, and
dispose the library once the PNaCl instance is destroyed.

In summary, the end-to-end audio processing in PNaCl hosting
works as follows. At JavaScript side, the DAWPlugin wrapper
embeds an SPN backend, which periodically pulls sample buffers
from the PNaCl implementation. PDAWHost receives the pull
request and marshalls the passed ArrayBuffers into C float arrays.
The arrays are then handed over to the DAWHost class for routing
to a proper VSTPlugin, DSSIPlugin, or LadspaPlugin container.
The container finally calls the hosted plugin implementation,
which computes the requested buffer. Because of the thread
boundary between JavaScript and PNaCl module, the SPN pull
request is asynchronous. Therefore, PDAWHost needs to double
buffer the samples, and for each pull request, return the buffer
processed during a previous call.

PNaCl host also allows direct connection with the browser audio
rendering pipeline. This link is enabled by Pepper API’s Audio
class, which is interfaced in PDAWHost in a similar way as the SPN
backed endpoint. The difference is, however, that the call is
synchronouse and that the buffer size is smaller.

3.4 Emscripten Host
The block diagram of Emscripten form DAW plugin hosting is
shown in Figure 2. In this case, the host resides entirely at
JavaScript side, but is still divided into a wrapper part (see Section
3.2), and an Emscripten part. The latter interfaces the virtual
maching using wrapped function calls and direct memory access.
As in PNaCl hosting, the Emscripten part comprises DAWHost, and
abstract DAWPlugin and DAWBundle classes.

Figure 2. DAW plugins as Emscripten modules.

Messaging between the JavaScript wrapper and Emscripten part is
now synchronous, which means that the audio does not require
double buffering. The audio buffers are allocated inside the
Emscripten part, and the JavaScript wrapper has direct access to

the buffers. Plugin may not connect directly into the browser
audio rendering pipeline however, since all audio data needs to be
routed through the SPN backend. In addition, message payload
does not need to be marshaled as in PNaCl case.

Emscripten also allows partial support for dynamic loading of
libraries, and a dlopen() function was initially included in the
Emscripten part. The implementation employs XmlHttpRequest in
plugin library loading. Library entry and exit points can then be
retrieved and invoked. Although this method proved succesfull,
the amount of manual intervention was considered impractical and
dynamic loading was left out of the contribution of this paper.

4. EVALUATION
PNaCl and Emscripten hosting solutions were evaluated in terms
of latency and performance. The evaluation was done in MacBook
Pro running OSX 10.9.5 (Mavericks), and Google Chrome v38
and Firefox v32 browsers. Since PNaCl is only available in
Chrome (Pepper API v37), Firefox was only used in Emscripten
(v1.25.0) based hosting solution.

The theoretical latencies are given in Table 1. According to Web
Audio API spec, the minimum SPN buffer size is 256 samples.
This produced audible artifacts, and therefore the buffer size was
increased to 512 samples. 512 samples equals 11.6 ms at 44.1 kHz
sample rate, totaling 23.2 ms when double-buffered. PNaCl
hosting requires another thread hop and another double buffer.
The direct connection into the browser audio rendering pipeline
using Pepper Audio API enabled 128 sample buffer size, which
equals 2.9 ms latency at 44.1 kHz.

Table 1. Theoretical latencies and measured polyphony.

Hosting Type samples ms polyphony

PNaCl (SPN) 2048 46.4 350

Emscripten (SPN) 1024 23.2 260

PNaCl (direct) 128 2.9 435

End-to-end latencies were measured by triggering a percussive
plugin timbre from an external USB-MIDI keyboard, and using
embedded laptop microphone to capture mechanical key clicks
and synthesized sounds. The span between the onsets was then
examined in audio waveform editor. The measured end-to-end
latencies were 20-30 ms higher than the theoretical values,
regardless of hosting type.

The performance was evaluated as the number of polyphonic
voices. A sinusoidal oscillator bank implemented as a LADSPA
plugin was used in the evaluation. The number of simultaneous
oscillators was increased until audible artifacts started to appear
(buffer sizes of 512 and 128 samples were used for SPN and
direct audio rendering, respectively). Chrome and Firefox did not
have a significant difference in Emscripten performance
evaluation. The maximum number of sinusoidal oscillators still
producing artifact free audio is given in the rightmost column of
Table 1.

5. DISCUSSION
The theoretical latency figures for direct PNaCl rendering are
excellent, and the synthesis engine felt responsive in that case.
The latencies of SPN-backed hosting types were noticeable, and
required adaptation in playing technique. SPN-backed methods
were unfortunately considered too unresponsive for precise

performative control. However, part of the perceived latency may
be attributed to the control mechanism, which added a constant
20-30 ms to the theoretical values. Since the buffer sizes did not
have an effect on the added latency, we argue that the controller
device key action mechanics combined with MIDI message
routing overhead in the browser gives raise to the increased
measure. The emerging AudioWorker node with synchronous
callbacks and reduced buffer sizes is expected to improve the
perfomative experiences. We would also like to see direct audio
routing from PNaCl modules into the AudioWorker node.

The polyphony measures look promising. As expected, PNaCl
outperformed Emscripten, but nevertheless, scripted performance
is still impressive. It should be noted that direct PNaCl polyphony
was measured with 128 sample buffering, and polyphony is
expected to increase with larger buffer sizes.

The size of a ported DAW plugin is fairly large because of
embedded virtual machine and supporting library code. Pluginless
host containing only DSSI scaffolding code weighs 312 kB in
PNaCl, and 612 kB in Emscripten. Full Hexter DSSI plugin
implementation adds only 128 kB to the scaffolding PNaCl host
size. Dynamically linked libraries would be thus beneficial in
reducing the download size of the plugins. Another option is to
bundle several different plugins into a single LADSPA or DSSI
module.

Although PNaCl and Emscripten share several concepts, they also
differ in many aspects. The choice between the two targets
depends on deployment and application specific preferences.
Emscripten targets are compatible with all modern JavaScript
engines, whereas PNaCl modules run only within Chrome. On the
other hand, PNaCl supported pthreads are at the time of writing
unsupported in Emscripten. In addition, smaller download size,
higher performance, low latency in direct mode, and effortless
JavaScript/C++ binding of pepper messaging API make PNaCl
targets attractive. However, the emerging AudioWorker node will
favor Emscripten targets if the PNaCl audio I/O is omitted from
the AudioWorker interface.

Code Listing 1 demonstrates the asynchronous nature of PNaCl
communication. This may complicate certain implementations
especially when many plugins are loaded and connected into the
audio graph. Promises were found extremely useful in this
context. Finally, since DAW plugins are more complex than lower
level DSP libraries, the produced host may be easily modified to
support existing DSP libraries as well.

6. CONCLUSION
This paper explored the use of LADSPA, DSSI and VST DAW
plugins in web browsers. The architecture of plugin hosting
options for PNaCl and Emscripten accelerators was designed,
implemented and evaluated. The evaluation revealed that PNaCl
plugins contributed less latency when connected directly into the
browser audio rendering pipeline, but Emscripten plugins
outperformed them in terms of latency when integrated into Web
Audio API rendering pipeline. On the other hand, PNaCl
implementation was found to be more efficient in terms of
polyphony because of native execution. The emerging
AudioWorker node was expected to become beneficial for DAW
plugin hosting in open web. In addition, a direct link between
PNaCl modules and AudioWorker node was suggested.

We foresee that browser hosted DAW plugins will provide usable
extensions to the current web audio processing stack. The plugins
complement the existing Web Audio API node set, and provide
semantically higher level components for musical applications
and audiovisual installations. Future work includes AudioWorker
integration and PNaCl plugin pipeline exploration. Improved GUI
support and full MIDI integration are other future improvements.
Finally, support for LV2 and JUCE plugins is planned in near
future.

7. REFERENCES
[1] Adenot, P., Wilson, C., and Rogers, C. 2013. Web Audio

API. W3C Working Draft, Oct 10, 2013. Available online at
http://www.w3.org/TR/webaudio/. (editor’s draft at
http://webaudio.github.io/web-audio-api/).

[2] Borins, M. 2014. From Faust to Web Audio: Compiling
Faust to JavaScript using Emscripten. in Proc. Linux Audio
Developers' Conference (LAC-2014).

[3] Choi, H. and Berger, J. 2013. “WAAX: Web Audio API
eXtension.” In Proc. New Interfaces for Musical Expression
(NIME’13), pp. 499–502.

[4] Donovan, A., Muth, R., Chen, B., and Sehr, D. 2010. PNaCl:
Portable Native Client Executables. White paper, Feb. 22,
2010. Website at https://developer.chrome.com/native-
client/overview

[5] DSSI – Disposable Soft Synth Interface, homepage,
http://dssi.sourceforge.net

[6] Herman, D., Wagner, L: and Zakai, A. 2014. asm.js.
Working Draft, Aug. 18, 2014. Available online at
http://asmjs.org/spec/latest/.

[7] Kalliokoski, J. and Wilson, C. 2013. Web Midi API. W3C
Working Draft, Nov. 26, 2013. Available online at
http://www.w3.org/TR/webmidi/. (editor's draft at
http://webaudio.github.com/web-midi-api/).

[8] LADSPA – Linux Audio Developer's Simple Plugin API,
homepage, http://www.ladspa.org

[9] Lazzarini, V., Costello, E., Yi, S., and Fitch, J. 2014. Csound
on the Web. in Proc. Linux Audio Developers' Conference
(LAC-2014).

[10] Orlarey, Y., Fober, D., and Letz, S. 2009. Faust : an efficient
functional approach to DSP programming. New
Computational Paradigms for Computer Music, pp. 65–96.

[11] Roberts, C., Wakefield, G., and Wright, M. 2013. The Web
Browser as Synthesizer and Interface. In Proc. New
Interfaces for Musical Expression (NIME’13), pp. 313–318.

[12] Zakai, A. 2011. Emscripten: an LLVM-to-JavaScript
compiler. In Proc. ACM Int. Conf. companion on Object
oriented programming systems languages and applications
companion (OOPSLA '11). ACM, New York, NY, USA, pp.
301-312. Website at http://kripken.github.io/emscripten-site/

