EarSketch: Teaching computational music remixing in an
online Web Audio based learning environment

Anand Mahadevan
School Of Music
Georgia Institute of
Technology
Atlanta, GA 30332
amahadevan32@gatech.edu

Jason Freeman
School Of Music
Georgia Institute of
Technology
Atlanta, GA 30332
jason.freeman@gatech.edu

Brian Magerko
Digital Media Program
Georgia Institute of
Technology
Atlanta, GA 30332
magerko@gatech.edu

Juan Carlos Martinez
School Of Music
Georgia Institute of
Technology
Atlanta, GA 30332
jcm7@gatech.edu

ABSTRACT

EarSketch is a novel approach to teaching computer science
concepts via algorithmic music composition and remixing in
the context of a digital audio workstation paradigm. This
project includes a Python/Javascript coding environment, a
digital audio workstation view, an audio loop browser, a so-
cial sharing site and an integrated curriculum. EarSketch is
aimed at satisfying both artistic and pedagogical goals of in-
troductory courses in computer music and computer science.
This integrated platform has proven particularly effective
at engaging culturally and economically diverse students in
computing through music creation. EarSketch makes use of
the Web Audio API as its primary audio engine for play-
back, effects processing and offline rendering of audio data.
This paper explores the technical framework of EarSketch
in greater detail and discusses the opportunities and chal-
lenges associated with using the Web Audio API to realize
the project.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
H.5.3 Information Interfaces and Presentation]: Web
based interaction

Keywords

Remixing, Music composition, CS education, Web audio,
Social media sharing.

Copyright © 2015 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

Web Audio Conference *2015 Iracam and Mozilla, Paris France

1. INTRODUCTION

EarSketch seeks to increase and broaden participation in
computing by creating an engaging and culturally relevant
learning experience using a STEAM (science, technology,
engineering, arts and mathematics) approach [14]. Students
write code (in Python or Javascript) to creatively and al-
gorithmically manipulate audio samples from a loop library
while learning computing fundamentals such as loops, lists,
conditions and functions. EarSketch offers a tightly inte-
grated creative and pedagogical environment that captivates
students by making abstract computing concepts relevant in
a context that borrows from the paradigm of digital audio
workstations and music production while remaining readily
accessible to those without any prior experience with music
or music technology [12].

Other recent projects have also tried to engage students in
computing by connecting coding to artistic and creative con-
texts. Alice, for example, is a 3D programming environment
that allows students to create animated stories through code
|8] while learning computer science principles such as object-
oriented programming. Scratch, on the other hand, teaches
programming through the creation and sharing of games,
animations and simulations [15]. EarSketch is inspired by
efforts such as these, but in addition to focusing on a differ-
ent artistic domain (music), it also focuses on authenticity
|9] in its design by ensuring its approach is both industry
and culturally relevant to students. Its API and visual de-
sign borrow heavily from pervasive integrated development
environments such as Eclipse and digital audio workstations
such as Live, it teaches students to code in some of the most
popular programming languages in the world (Python and
Javascript), and it enables students to create music in pop-
ular styles such as hip hop and dub step while using loops
created by music industry veterans [4].

Since development of EarSketch began in 2011, it has been
accessed by over 10000 users at over a dozen schools, summer
camps, academic courses, and other educational programs
ranging from elementary school through college. It has also
been incorporated into a music technology MOOC |[3] taught
by one of the authors that has reached over 35,000 students.

A 2013 pilot study at an Atlanta-area high school demon-

strated the success of EarSketch in improving student en-
gagement and content knowledge in computing. Approxi-
mately 100 student participants completed a pre and post
content knowledge assessment and a retrospective pre-post
student engagement survey, and a subset of the students
also participated in a focus group. The results showed sig-
nificant increases in student content knowledge and engage-
ment, regardless of ethnicity or gender, and showed that
for many engagement constructs, female students increased
significantly more than male students from pre to post [4].

The primary focus of this paper is on the technical imple-
mentation of the EarSketch learning environment. We dis-
cuss the original technical framework for EarSketch, our mo-
tivations for reimplementing EarSketch as a browser-based
application using Web Audio, the software architecture, and
various constraints, limitations, and development challenges.

2. TECHNICAL DESIGN AND IMPLEMEN-
TATION

2.1 Motivation for web based version

Initially, EarSketch was built on top of Reaper, a com-
mercial but inexpensive DAW (digital audio workstation)
similar to those used in professional studios. Reaper sup-
ports a wide range of multi track audio recording and editing
features and includes a large library of effects. It requires
minimal system resources (CPU, RAM, disk space), which
makes it practical for school computer labs that often use
outdated technology. Most importantly to us, Reaper is also
extremely extensible: its Python API, ReaScript, provides
low-level access to its internal data structures and functions
[12).

Using Reaper, we were able to quickly develop a ver-
sion of EarSketch to use in pilot studies. However, this
approach created some design problems and logistical chal-
lenges. EarSketch existed as a collection of linked but sepa-
rate tools: code editor + digital audio workstation + online
curriculum + audio library + social sharing site. These
elements were loosely connected but operated as separate
desktop applications and web sites. This created a rather
convoluted workflow for students to follow as it involved too
many discrete components that required constant context
switching between one another.

This version of EarSketch also created installation and
setup challenges: school IT labs had to seek separate ap-
proval to install each component application, and our in-
staller was often intercepted by security software. Finally,
EarSketch was dependent on the Reaper DAW, which de-
spite being very cheap, was still a financial barrier to some
cash-strapped schools.

Based on these experiences, in 2013 we decided to imple-
ment a new version of EarSketch entirely in the web browser,
EarSketch 2.0. A web-based paradigm addresses all the de-
sign and logistical challenges of our previous version and
offers the opportunity to create a truly integrated learn-
ing environment for students. The rapid development of
the Web Audio API in recent years made it possible for us
to consider a web-based version of EarSketch that just two
years earlier had seemed impractical.

2.2 EarSketch API design

In both versions of EarSketch, the EarSketch API provides
functions that closely mimic popular operations in a DAW
workflow such as placing audio clips on a multi-track time-
line, adding effects and effect automation breakpoints, and
step-sequencing rhythms. Our customized API abstracts a
number of low-level intricacies and function calls.

2.2.1 Placing audio on the timeline

Figure[Z]illustrates a basic EarSketch script that initializes
the DAW and places an audio clip onto a track. The code is
written in Python and begins by importing the EarSketch
module for Python. (This step is not required while coding
in Javascript.) The project tempo is then set to 120 bpm
using the setTempo() function.

Next, an audio file is placed on the timeline using the
fitMedia() function. Audio files are specified by constants.
EarSketch comes bundled with over 2000 audio loops in a
variety of genres like hip-hop, soul, rock, techno and house
that we commissioned from Richard Devine, an experimen-
tal electronic musician and sound designer, and Young Guru,
an audio engineer and DJ best known for his long-running
collaboration with Jay Z. Users can also upload their own
audio files to add to their EarSketch sound library. Audio
content can be previewed in a sound browser (Figure[l)) and
the corresponding constant can be pasted into the code edi-
tor directly from the browser. EarSketch automatically time
stretches each audio clip to match the specified tempo and
loops it as necessary to fill the duration specified. The re-
maining arguments to fitMedia() specify a track number,
start measure, and end measure. Floating point arguments
specify midpoints in measures.

The script in Figure [2 also demonstrates how to place an
effect on a particular track. In this case, the GAIN param-
eter of the VOLUME effect is being automated from -60db
to 0db between the first and fifth measure.

Figure [3] shows the result of running the script in the
DAW view. In the DAW view, users can play the music
they created in code and perform basic transport and mix-
ing operations. By design, though, they cannot edit the
multi-track audio and effects content directly: they must
edit their code to change the music. Users can export their
project to Reaper if they wish to edit it further.

2.2.2 Beat sequencing

The script in Figure 2] does more than just place audio
on a timeline and apply effects. EarSketch’s makebeat ()
function allows users to create rhythmic beats and phrases
by using strings to piece together contents of different audio
files at a 16th note resolution. Borrowing from Thor Mag-
nusson’s ixi lang [10] and Freeman and Van Troyer’s LOLC
|5], our API uses a string representation to sequence indi-
vidual sixteenth notes over a full measure. The notation
is fairly straightforward; a number represents a single audio
file or an index in a list of audio files, a “+” sign extends the
duration of the preceding sound by a sixteenth note, and a
“~" sign indicates a rest. The resultant pattern is depicted
in Track 2 of Figure Through beat sequencing, EarSketch
teaches students computer science concepts such as strings,
string operations, lists, and list indices.

EarSketch

VOLUME-GAIN

Loading File author:
TECHNO_LOOP_PART_002 done

description:

Loading File ?
TECHNO_SYNTHPLUCK_002 done| #
#setup section
Loading File from earsketch import =
TECHNO_LOOP_PART_006 dona

init()
setTempo(120)

#music section

synthl = TECHNO_SYNTHPLUCK_001
synth2 = TECHNO_SYNTHPLUCK_002
introBeat = TECHANO_LOOP_PART_002
drums = TECHNO_LOOP_PART_006

Figure 1: The EarSketch Interface

2.2.3 Analysis

EarSketch also provides functionality for analyzing the
content of an audio clip or a track or a segment of a clip
or track, computing features such as spectral centroid and
RMS amplitude. The calculated information can be effec-
tively used in a pedagogical and compositional context. For
example, students can create a noise gate by arithmetically
comparing RMS amplitude values of various clips (or seg-
ments of clips) with some threshold and accordingly silenc-
ing those segments that are above that threshold. Through
analysis, we also teach students concepts such as condition-
als, sorting, and mapping. The implementation of most of
our analysis features makes use of the Fast Fourier Trans-
form (FFT). The FFT routines we use are part of the dsp.js
library .

Detailed specifications of the EarSketch API can be found
on our curriculum website (http://earsketch.gatech.edu/,
category/learning/reference/earsketch-api)).

from earsketch import *

init()
setTempo(120)

£ L B

6 # melody

7 fitMedia(HOUSE_ROADS_PIANO 007, 1, 1, 5)
8 # effects

9 setEffect(l, VOLUME, GAIN, -60, 1, 0, 5)
10 setEffect(l, DELAY, DELAY_TIME, 250)

12 # Sequence a beat

13 beatElement = 05_KICKO03

14 beatString = "0+++0+++0+0+0-0-"

5 for index in range(l,5):

16 makeBeat (beatElement, 2, index, beatS5tring)

18 finish()

Figure 2: Example of a basic EarSketch script

2.3 Implementation

2.3.1 Python/ Javascript editor

EarSketch’s code editor uses CodeMirror [7], a text edi-
tor implemented specifically for the browser with specialized
language modes and features such as syntax highlighting and
auto-completion.

When users code in Javascript, the code is simply handed
over to the backend, also implemented in Javascript, for
evaluation. Python code requires an intermediate agent to
interpret the Python code into Javascript. For this pur-
pose we use Skulpt, a Javascript, browser-based implemen-
tation of Python that runs completely on the client side ﬂ§|
Skulpt’s extensibility enabled us to easily add support for
the EarSketch API functions.

2.3.2 Client-Server model

Our approach to distributing tasks across client and server
is influenced by our desire to minimize required server-side
resources, optimize performance in low-bandwidth school
settings, and minimize delay between executing code and
hearing the resulting music. Following from this, most of
the computationally intensive and time sensitive tasks — au-
dio playback, effects processing and DAW view rendering —
occur on the client machine. The server is responsible for
hosting all of the audio loops and samples and for perform-
ing operations on those samples, such as time stretching
samples to match project tempo, that are currently difficult
to do efficiently with the Web Audio API. On the server
side, we use SoX to time stretch and perform format
conversions. A Tomcat servlet manages audio sample re-
quests, maintaining a fixed thread pool of SoX instances,
queuing requests, and caching converted files to improve ef-
ficiency. The client also caches requested audio samples to
avoid redundant transfers. To improve performance in low-
bandwidth settings, the server can also transfer audio files

http://earsketch.gatech.edu/category/learning/reference/earsketch-api
http://earsketch.gatech.edu/category/learning/reference/earsketch-api

Master

Track 1 v
Solo | Mute WW—%»W—%MW—MHWW—»

Bypass VOLUME-GAIN

Bypass DELAY-DELAY_TIME

Track 2 ™
Solo | Mute ll‘-“‘;.a'."

Iﬁ';‘fﬁ\‘f'w I{‘s’v

Bl
L

T T T T

Figure 3: DAW visualization of example script from Figure

in a lossy format (Ogg Vorbis) instead of as WAV files.

The server also handles operations such as managing user
accounts, facilitating sharing projects, and saving and load-
ing scripts to and from the server. These are handled by a
Tomcat servlet with a MySQL database. The client side is
managed by Angular JS; a popular MVC Javascript frame-
work . The client and server communicate via a RESTful
APIL.

2.3.3 Playback engine

In this section, we describe the process of audio playback
on the client side using the Web Audio API. Once the server
dispatches the relevant audio clips to the client, each is de-
coded, and its buffer and relevant metadata (such as time-
line location) is stored in EarSketch-specific data structures.
Since the loading process is asynchronous, playback waits
until all the sound buffers are filled with the decoded PCM
data.

Next, playback is scheduled. The scheduling of playback
is relative because playback begins only once the user presses
the DAW’s play button. The start () and stop() APIs pro-
vided by web audio make all of this possible as we can specify
the time domain offsets as parameters to these functions .
This property is also exploited to facilitate scrubbing around
the timeline and pausing and resuming playback. Since the
web audio API runs on its own thread, its scheduler is much
more precise than traditional Javascript timer routines like
setTimeout (). If a particular audio clip is scheduled to play
at the same time as part of different tracks, we still need only
one audio buffer with the contents of that clip, since differ-
ent buffer sources can read the same audio buffer. Hence,
this asserts the fact that duplicate audio buffers are redun-
dant despite the same audio file being overlapped in time
[14].

2.3.4 Effects and Automation

The Web Audio API includes an assortment of AudioNodes
that make it straightforward to rack up custom effects.

EarSketch uses nodes such as GainNode, DelayNode, Wave-
shaperNode, and BiquadFilterNode to realize its 15 effects

(refer tohttp://earsketch.gatech.edu/category/learning/

reference/every-effect-explained for a complete list of
effects). Web Audio AudioNodes have specific configurable
parameters to modify how the node processes incoming au-
dio. For example, the DelayNode has an attribute called
delayTime that specifies by how milliseconds the input au-
dio is delayed.

Many effects can be created by routing nodes, much like
other patching environments for audio synthesis like MAX

/ MSP and Pure Data. Chris Wilson’s web audio play-
ground application demonstrates how audio effects can
be built from scratch using similar techniques. Once the
nodes are connected, the entire graph can be encapsulated
into a custom Javascript object. EarSketch takes advantage
of such abstractions in order to chain multiple effects on
a single track. The custom effects that are built are sim-
ply wired together in a linked list with the head being the
source audio and the tail being the Audio Context’s destina-
tion. To implement effect automation envelopes, we lever-
age Web Audio API’s ability to schedule changes to audio
parameters residing within AudioNodes. Not only can we
schedule the values of AudioParams at a particular instant
of time, but we can also customize the rate at which the pa-
rameter changes . For the sake of simplicity, EarSketch
uses a linear ramp to interpolate between automation points
on the timeline. However, more complex automation curves
can easily be implemented. The routing graph template that
EarSketch employs is slightly more complicated, as the ab-
stracted effect nodes need to support dry/wet mixes as well
as effect bypass capability. Figure E| is the resultant node
graph of a delay node.

We have explained how EarSketch uses encapsulated node
graphs to perform effect automation. For more complicated
cases like LFO (low frequency oscillator) based effects, au-
tomation has to be performed on a set of basic AudioParams.
Consider a tremolo effect for example - the amount of mod-
ulation caused by the LFO is actually controlled by a gain
node, though that might not seem intuitive at first. The
gain node shapes the amplitude of the LFO and as a result,
controls the depth of modulation. The same logic can be
carried forward for effects like Phaser, Chorus, Flanger and
so on. In a nutshell, it can be easily understood from the
previous discussions that the Web Audio API can offer us
significant low-level parameter control by simply tweaking a
few basic parameters of AudioNodes.

Some effects, however, demand different approaches. Let
us consider pitchshift as an example. It cannot be mod-
eled using Web Audio’s playbackRate parameter as it en-
tails an inevitable and undesirable change in tempo as well.
EarSketch initially made use of the ScriptProcessorNode to
tackle this issue. The script processor gives us access to a
frame of buffer data that can directly be manipulated using
native JavaScript code [14]. Control is transferred to a call-
back function (audioprocess event) where we can process a
frame of data. The frequency of the call back depends on
the size of the buffer data to be manipulated. During the
audioprocess event, the buffer is sent to another JavaScript

http://earsketch.gatech.edu/category/learning/reference/every-effect-explained
http://earsketch.gatech.edu/category/learning/reference/every-effect-explained

Bypass

Dry

Source Audio

Delay Element

Feedback|«———

Dry
Output
Bypass
wet Wet -

Figure 4: EarSketch delay effect’s routing graph (Triangles represent gain nodes).

based phase vocoder module that performs frequency do-
main transformation, harmonic content retention and re-
sampling. This is a computationally intensive process and
ends up hogging the Javascript thread. The outcome is not
pleasing when the effect is applied to multiple tracks in real
time and results in glitchy audio playback.

Due to these limitations, we are considering different ap-
proaches to these script processor dependent effects. Our
current solution for pitchshift is prior rendering of pitch-
shifted clips by SoX on the server. This offline operation is
tantamount to requesting a new audio loop from the server
and therefore works against our client-server distribution
goals (see section 2.3.2) that seek to minimize server-side re-
source consumption. It does, however, offer a solution that
does not compromise audio quality and serves as an interim
implementation until we identify an appropriate client-side
solution.

2.3.5 Offline rendering

EarSketch also supports offline rendering of audio created
by the user. The Web Audio API’s OfflineAudioContext is
employed to perform this task. Once the audio is rendered,
we have access to the PCM buffer data, which we use to
export to a WAV file that can be downloaded by the user
to his or her desktop. Since the offline context can encode
the audio faster than real time, an entire song can often be
completed in just a few seconds. It is worth mentioning here
that scriptProcessor based effects (see section 2.3.4) are not
audible when the audio file is rendered simply because those
callbacks occur in real time.

2.4 Export to Reaper
Since the EarSketch DAW is view-only, with simple trans-

port and mixing controls but no way to edit audio and effects
content, we offer users the ability to export their EarSketch
projects to the Reaper DAW for further editing or for record-
ing additional tracks. We collate the information from all
our internal data structures containing pertinent informa-
tion about the project tempo, audio buffers and their place-
ment on tracks, effects, automation points, etc. and convert
them to a Reaper project file (.rpp), a format that loosely
resembles XML. The EarSketch server generates a ZIP file
with the Reaper project and all the source audio files refer-
enced by the project.

3. BETA TESTING, USER FEEDBACK, AND
FUTURE WORK

We released an initial public beta version of EarSketch
online in March 2014. Since then, it has been used in aca-
demic courses, summer camps, teacher training workshops
and a massive open online course (MOOC). We have re-
ceived informal, largely positive feedback from students and
teachers about the user experience, especially as compared
to the desktop version of EarSketch. We have also received
numerous suggestions and feature requests, especially from
teachers, which we have incorporated into the current ver-
sion of the web site. For example, we added features such
as font size options to help teachers use EarSketch on video
projections during classroom lectures. We also unified the
code editor, sound browser, console and DAW view into a
single view, each with resizable dimensions. (We had pre-
viously had some of these components on separate tabs.)
This emulates the experience of popular IDEs like Eclipse
and Visual Basic and also DAWSs like Ableton Live while
avoiding constant tab switching and facilitating more direct

associations of music with code.

In November and December 2014, a member of the EarS-
ketch research team with expertise in usability testing con-
ducted a more formal usability study with high school stu-
dents using EarSketch. Preliminary data has yielded addi-
tional suggestions, including revamping the sound browser
interface to enable easier navigation and search and enabling
personalization of the the UI theme and color schemes to
help students feel more invested in the interface.

In the coming year, we are working to integrate more
components of EarSketch into the new single-window in-
terface design. We plan to embed the EarSketch curricu-
lum, teacher training materials, and social media features
directly into the interface instead of maintaining them on
distinct web sites.

In order to maintain the robustness of our software, our
team is also developing a unit testing framework and im-
proved error reporting and logging mechanisms. We are also
exploring ways to bring the EarSketch approach to compu-
tational music and computer science education to additional
programming contexts, including a visual programming en-
vironment built on Blockly [11] and a mobile-friendly pro-
gramming environment. We hope these additional program-
ming contexts will help bring EarSketch to younger students
and to more informal learning environments.

4. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. CNS #1138469
and DRL #1417835. It is also supported by the Scott
Hudgens Family Foundation. Many thanks to the entire
EarSketch project team (http://earsketch.gatech.edu/
personnel)).

EarSketch is freely available at http://earsketch.gatech.

edul

5. REFERENCES

[1] G. Brat Tech LLC and community.
angular/angular.js, 2009.

[2] C. Brook. corbanbrook/dsp.js
https://github.com/corbanbrook/dsp.js, 2010.

[3] J. Freeman. Survey of music technology
https://www.coursera.org/course/musictech, October
2014.

[4] J. Freeman, B. Magerko, J. Permar, C. Summers,

E. Fruchter, M. Reilly, and T. McKlin. Engaging
underrepresented groups in high school introductory
computing through computational remixing with
EarSketch. In SIGCSE 201} - Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, pages 85-90. Association for Computing
Machinery, 2014. 85.

[5] J. Freeman and A. Van Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, (2):8, 2011.

[6] S. Graham. https://github.com/skulpt/skulpt, 2010.

[7] M. Haverbeke. codemirror/CodeMirror
https://github.com/codemirror/codemirror, 2007.

[8] C. Kelleher, R. Pausch, and S. Kiesler. Storytelling
alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,

(11]

(12]

(15]

CHI ’07, pages 1455-1464, New York, NY, USA, 2007.
ACM.

H.-S. Lee and N. Butler. Making authentic science
accessible to students. International Journal of
Science Education, 25(8):923-948, Aug. 2003.

T. Magnusson. The IXI lang: A SuperCollider
parasite for live coding. International Computer Music
Conference, pages 503-506. San Francisco,
Huddersfield, International Computer Music
Association, Centre for Research in New Music
University of Huddersfield, 2011.

A. Marron, G. Weiss, and G. Wiener. A decentralized
approach for programming interactive applications
with JavaScript and blockly. In Proceedings of the 2Nd
Edition on Programming Systems, Languages and
Applications Based on Actors, Agents, and
Decentralized Control Abstractions, AGERE! "12,
pages 59-70, New York, NY, USA, 2012. ACM.

S. McCoid, J. Freeman, B. Magerko, C. Michaud,

T. Jenkins, T. Mcklin, and H. Kan. EarSketch: An
integrated approach to teaching introductory
computer music. Organised Sound, 18(2):146-160,
Aug. 2013.

L. Norskog. SoX http://sox.sourceforge.net /sox.html,
1991.

N. Park and Y. Ko. Computer education’s
teaching-learning methods using educational
programming language based on STEAM education.
In J. J. Park, A. Zomaya, S.-S. Yeo, and S. Sahni,
editors, Network and Parallel Computing, number
7513 in Lecture Notes in Computer Science, pages
320-327. Springer Berlin Heidelberg, Jan. 2012.

M. Resnick, J. Maloney, A. Monroy-Hernédndez,

N. Rusk, E. Eastmond, K. Brennan, A. Millner,

E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Commun. ACM,
52(11):60-67, Nov. 2009.

B. Smus. Web Audio API. “O’Reilly Media, Inc.”,
Mar. 2013.

C. Wilson. cwilso/WebAudio
https://github.com/cwilso/webaudio, 2012.

http://earsketch.gatech.edu/personnel
http://earsketch.gatech.edu/personnel
http://earsketch.gatech.edu
http://earsketch.gatech.edu

	Introduction
	Technical Design and Implementation
	Motivation for web based version
	EarSketch API design
	Placing audio on the timeline
	Beat sequencing
	Analysis

	Implementation
	Python / Javascript editor
	Client-Server model
	Playback engine
	Effects and Automation
	Offline rendering

	Export to Reaper

	Beta testing, User feedback, and Future Work
	Acknowledgments
	References

