
Scrolling Through Sound

Scrolling as a method of interaction with audio on the web

Ehsan Ziya
Independent Researcher

London, UK
ehsan.ziya@gmail.com

ABSTRACT
This paper aims to investigate the creative uses of scrolling
as an interaction method for navigating through sound and
music. Mainly focused on the use of granular synthesis,
the paper explores the interaction model and technical chal-
lenges and presents a prototype as proof of concept to demon-
strate a case in which scrolling can be used to create an
immersive and interactive audio experience on the web.

Link to prototype: zya.github.io/scrollsound

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing; H.5.2 [Information Interfaces and
Presentation]: User Interfaces

General Terms
Experimentation, Design

Keywords
Web Audio API,Granular Synthesis, JavaScript,Generative
Music, Interactive Audio,Scrolling

1. INTRODUCTION
Audio, despite its relatively long history on the web, has
been fairly static until recently. From the early <bg-sound>[1]
to the more recent <audio>[2] element, audiences are used
to listening passively to audio in a linear and static fashion,
while having a limited amount of control over it. They could
only play, pause or stop the audio or change the volume in
some cases. The introduction of Web Audio API[3] opened
up a breadth of new possibilities for changing this. Devel-
opers can now synthesise, manipulate, process and analyse
audio directly in the browser, in real-time and without the
need for third-party plugins. This has lead to creation of a
series of interesting tools and demos. From full-fledged mu-
sic production environments and synthesisers such as Sound-
Trap[4] , to games and audio visualisation experiments such

Copyright (2015) for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.
WAC ’15 January 26 - 28 2015, Paris, France

as Weird Kids[5] by Cabibbo. Although the idea of interac-
tive digital audio is not a new concept, ubiquity of browsers
across platforms and the web’s reach makes the web a power-
ful publishing platform for any interactive content including
new forms of digital audio and music. However, the unique
power of web audio is revealed when it is used in conjunction
with other web technologies. Apps can leverage these tech-
nologies to create immersive, interactive and collaborative
experiences. Integration with Canvas API[6], WebGL[7] and
CSS animations[8] can lead to creation of audio-visual expe-
riences. Standards such as WebRTC [9]and Web Sockets[10]
provide good opportunities for development of collaborative
environments and connected experiences. In addition to the
mentioned standards, the web offers a set of APIs for han-
dling user interaction with support for different types of user
input such as keyboard, mouse, multi-touch and scrolling.

The interaction method we will focus on in this paper is
scrolling. Despite its recent popularity in the visual de-
sign community with trending techniques such as parallax
scrolling[11], this basic interaction tool has been so far over-
looked by the audio community. Scrolling is browser’s native
method for navigating through content. Traditionally, it is
used to scroll through text and images, from top to bottom
or left to right. But It can also be used creatively to add
depth and narrative to interactive experiences on the web.
As mentioned before, the technique widely known as paral-
lax scrolling is a solid example of this. Web designers have
been using it as a way to take audiences through stories. The
technique enhances user engagement by dynamically chang-
ing the visual properties of the page with scrolling events
and revealing new elements as the user moves through the
page. When it comes to audio, scrolling has the potential to
be used for development of immersive and non-linear audio-
visual experiences. By allowing users to move through sound
smoothly, we can introduce an element of narrative and ex-
ploration to audio-visual experiences. This paper aims to
investigate the techniques in which scrolling can be used as
an interaction method for navigating through sound. Mainly
focused on the use of granular synthesis, we present a pro-
totype as a proof of concept which will be discussed in the
following sections.

2. USECASES
2.1 Interactive Music Experiences
Since the introduction of Web Audio API in 2011, a series of
experiments and demos have been developed, exploring the
field of interactive music. Apps such as Flora Drift[12] have

zya.github.io/scrollsound


experimented with generative and dynamic music where ex-
periments such as George And Jonathan III[13] have focused
on audio visualisation. But not a lot of experimentations
have been done with manipulation of time and progression.
The demos mentioned above either follow a traditional, lin-
ear time or do not have a notion of time and progression. For
example a song is played from the beginning to the end and
the user can see real-time visualisation of musical notes. Or
the user is put in a timeless space where she can change dif-
ferent characteristics of the music by interacting with visual
objects.

The method proposed in this paper aims to add a layer of
narration and progression to interactive music using scrolling
as the main user input. Where the user has the ability to
go back and forth in a piece of music without interruption
while being able to interact with visual objects to affect
the sounds. Familiarity of users with the act of scrolling is
a great advantage in creating interactive experiences since
users will not need to learn new and complex interfaces and
interaction models. By using this method, we can still lever-
age the dynamic nature of generative music while keeping
the general sense of narrative and progression in music.

Scroll Sound[14] was developed as a proof of concept ex-
ploring the various ways in which scrolling can be used in
addition to more conventional input types to create an in-
teractive and dynamic music experience. The main inter-
action method used in the demo is based on mapping the
scroll position to the playback position (Figure 1). Using
the granular synthesis technique described in section 3.1, we
enable users to move through the sound smoothly as they
scroll down or up the page. In addition to the grains, we can
use the scroll position to trigger certain events such as trig-
gering notes, changing chords and changing AudioParam[3]
values e.g. gain value and pan position. Scrolling will allow
the users to move bi-directionally through the experience or
stay in one section as long as they prefer.

2.2 Music Composition Tool
From the early uses of tape based granular synthesis tech-
niques by Greek composer Iannis Xenakis in 1959[15] to the
first software implementations of the technique by Curtis
Roads[16] and to more recent tools such as Paul Stretch[17],
the method has been widely used for music composition
throughout the years. Granulation is capable of generating
rich, evolving textures and musical soundscapes. Although
the algorithm used in the prototype is basic in comparison
to the others used in commercial products, it can still be
used to create tools for extreme time-stretching. The user
could use a combination of automatic playback speed and
scrolling to alter the playhead and could navigate back and
forth through the sound for more musical expression if nec-
essary.

2.3 Other
Projects such as Responsive Radio[18] by BBC Research and
Development have investigated the possibilities for more cus-
tomisable radio listening experience by allowing users to al-
ter the length of programmes or control the volume of music
and speech independently. The methods described in this
paper can also be used in a similar way. For example the
user can move through a radio programme while different

Figure 1: Scrolling and audio events

parts of the speech are triggered according to the scrolling
position.

One of the other fields where scrolling is being used an
interaction method is storytelling and branding. Apple’s
iMac with Retina web site[19] is a concrete example of us-
ing scrolling creatively to enhance user engagement with a
brand. The same methods can be used for audio in order to
create multi-sensory experiences to tell stories on the web.

The method can also be used in music education where stu-
dents can move through a piece of music where notes are
triggered and visualised helping them to study any given
piece of music interactively.

3. TECHNICAL OVERVIEW
3.1 Granular Synthesis Engine
The main technique that allows us to move through sound
smoothly is granular synthesis. The process of sampling
short pieces of audio (1 to 200ms) known as grains and play-
ing them back within short intervals will allow us to navigate
through the sound file without any interruption. This tech-
nique is a powerful audio manipulation system that can be
used to adjust the speed, pitch or other characteristics of a
given sound independently and in real-time[20]. An example
of this technique can be seen in HTML5 Granular[21]where
the mouse or touch position is mapped to the grain position
and gain. The code snippet below (Listing 1) is the simpli-



fied version of the grain function which is responsible for cre-
ation and playback of a grain according to the position in the
audio file[22]. This function will be called using setInter-

val with the updated offset. In the case of the prototype
presented here, offset is calculated according to scrolling-y
position and duration of the sound file (See Listing 2). After
loading an audio file and decoding it using decodeAudioData

we can read it as many times as needed using the Buffer-

Source node. This method is reasonably performant and it
will provide us with great flexibility for creating large num-
bers of grains and layering them for smoother sound. As you
can see, the offset is then randomised with a small margin
each time before being used in s.start for a smooth repre-
sentation of sound. Otherwise we would encounter glitches
when the position is static.

function grain(ctx, bfr, dest, a, r, offset){
var s = ctx.createBufferSource();
var g = ctx.createGain();
s.buffer = bfr;
s.connect(g);
g.connect(dest);
var random = ((Math.random() * 0.3) - 0.15);
var now=ctx.currentTime;
s.start(now,randomisedOffset,now+a+r);
g.gain.setValueAtTime(0, now);
g.gain.linearRampToValueAtTime(1,now + a);
g.gain.linearRampToValueAtTime(0,now + a + r);
s.stop(now + a + r);
}

Listing 1: Grain Function [22]

As mentioned before, then the grain function will be called
with an updated progress value as offset. We are aware
that setInterval[23] is not a reliable option for precise
timing and scheduling since the timing is sensitive to other
events in the execution thread [24]. However, in this case,
the exact timing of events is not an important factor and the
fluctuations in the speed will not have an audible effect as
long as the events are fired frequently in short intervals. Ev-
ery 40ms in this case. The limitation of this method is that
using setInterval could potentially affect the animation
frame rate if Javascript and requestAnimationFrame[25] are
used for drawing.

setInterval(function() {
// scales input range to output range
var offset=map(prog,0,1,0,bfr.duration);
grain(ctx, bfr,master,0.3,0.5,offset);
}, 40);

Listing 2: setInterval and offset calculation

3.2 Interaction Model
There are several input types widely used for scrolling on the
web. Namely mouse wheel, keyboard arrow keys and touch
events. In order to use scrolling for moving through sound
and updating the progress, we need to keep track of the scroll
position. This can be achieved using the onscroll[26] events
and updating the progress using window.pageYOffset or
properties such as element.scrollTop[27]. However, there
is a limitation to this approach since mobile browsers min-
imise script execution during scrolling. This will result in
unresponsive user experience. One of the solutions to solving
this issue is using the touchdrag events to emulate scrolling

behaviour and keeping track of progress manually. This task
is non-trivial and is out of this paper’s concern, but there
are libraries that we can use to address this issue.

3.3 Scrolling Libraries
There are several libraries available that address the issue of
cross platform scrolling with slightly different approaches.
iScroll.js[28] and scroller.js[29] resolve this issue by
using the same mechanism in all platforms by even replac-
ing the scrolling mechanism in desktop with a custom im-
plementation. They both have JavaScript APIs for control-
ling events and defining animations where skrollr.js[30]
focuses on declarative HTML approach by keeping CSS an-
imation definitions to the element by using data attributes.
Skrollr does not replace the default scrolling mechanism in
desktop while offering a good user experience in mobile.
Skrollr is particularly suitable for our use-case, since it will
let us focus on audio. It offers keyframe event handling
which can be used to fire audio events such as sound play-
back in certain parts of the page, changes in gain or other
audio params and synchronising audio events with anima-
tions.

3.4 Event Handling
The code snippet below demonstrates the way in which
Skrollr element declaration works. In this example opacity
of the element example will be 0 when top of the element is
at the top of the viewport and will be animated to 1 when
bottom of the element hits the top of the viewport. The
last data attribute allows us to receive keyframe events using
the keyframe event handler(Listing 4). For example, when
data-top-bottom occurs, we receive an event which can be
used to trigger sounds or updating AudioParams. For exam-
ple, we can use the opacity value of an element to change
the gain value of an audio node providing an audio-visual
feedback to the user.

<div id=’example’
data-top="opacity:0"
data-top-bottom="opacity:1"
data-emit-events

></div>

Listing 3: Skrollr element declaration

The code snippet below demonstrates skrollr’s initialisa-
tion method. There are two types of useful events for ma-
nipulating audio dynamically according to scrolling position.
Render is a callback method for every time a change occurs
in the scrolling position with useful properties such as cur-

Top and maxTop which we use to calculate the progress value.
And as mentioned before, keyframe is an event handler for
keyframe events.

s=skrollr.init({
smoothScrolling: true,
render: function(e){
//calculating the progress as a percentage
progress = e.curTop / e.maxTop;

},
//the keyframe hanlder
keyframe: keyframeHandler

});

Listing 4: Skrollr initialisation and event hanlders



Keyframe events will be called with arguments such as name
of the element, name of the keyframe and the direction in
which the user is scrolling. We can match patterns against
these arguments to trigger specific events in relation to each
event. For example, if the element x enters the viewport
from the bottom, then play a certain note and start a CSS
animation.

4. CONCLUSIONS AND FUTURE WORK
The proposed method of interaction encourages music listen-
ing on the web as a more participative activity as opposed
to a passive and linear experience. By using this system,
we can keep a balance between the familiar sense of narra-
tive and the dynamic nature of generative music. A proto-
type has been presented making use of granular synthesis
and demonstrating an interactive music experience where
scrolling is the main interaction method.

The primary aim of this paper has been to address the
technical challenges in using scrolling to navigate through
sound. A granulation system was developed and issues such
as cross-platform availability, multiple input support and
performance were covered. However, the creative possibili-
ties based on this approach need to be explored further.

An important area of future exploration is usability. Initial
user testing on the prototype shows that given the different
types of input such as mouse wheel, trackpads and touch,
users may have different experiences due to different imple-
mentations. For example, using trackpads or touch screens
will result in a fast progression while using the arrow keys or
the mouse wheel will have significantly slower speeds. The
system can benefit from more systematic user studies to ad-
dress this issue by finding optimal values for speed or even
allowing users to customise the experience by adjusting the
overall length of the piece or the progression speed.

Future technical work may also include further refinement
of the interaction system for a better performance across
platforms as well as further development of the granular
engine.

5. REFERENCES
[1] <bg-sound>. https://developer.mozilla.org/

en-US/docs/Web/HTML/Element/bgsound. Accessed:
2014-10-07.

[2] <audio>. https://developer.mozilla.org/en-US/
docs/Web/HTML/Element/audio. Accessed: 2014-10-07.

[3] Web audio api.
http://webaudio.github.io/web-audio-api/.
Accessed: 2014-10-07.

[4] Sound trap. https://www.soundtrap.com/. Accessed:
2014-10-07.

[5] Weird kids. http://cabbi.bo/weirdkids/. Accessed:
2014-10-07.

[6] Canvas api. https://developer.mozilla.org/en-us/
docs/web/api/canvas_api/. Accessed: 2014-10-07.

[7] Opengl es 2.0 for the web.
https://www.khronos.org/webgl/. Accessed:
2014-10-07.

[8] Css animations.
http://dev.w3.org/csswg/css-animations/.

Accessed: 2014-10-07.

[9] Webrtc 1.0: Real-time communication between
browsers. http://www.w3.org/TR/webrtc/. Accessed:
2014-10-07.

[10] Web sockets. https:
//developer.mozilla.org/en/docs/WebSockets.
Accessed: 2014-10-07.

[11] Best websites with parallax scrolling of 2013.
http://goo.gl/xajPUR. Accessed: 2014-10-07.

[12] Flora drift by white vinyl design.
http://whitevinyldesign.com/floradrift/.
Accessed: 2014-10-10.

[13] George and jonathan iii.
http://www.georgeandjonathan.com/#1. Accessed:
2014-10-10.

[14] Scroll sound source code.
https://github.com/zya/scrollsound. Accessed:
2014-10-20.

[15] Xenakis - analogique a + b.
https://www.youtube.com/watch?v=DTzOWKaDrVI.
Accessed: 2014-10-10.

[16] Curtis Roads. Microsounds. MITPress, Cambridge,
Massachusetts, 2001.

[17] Paulstretch by paul nasca. http:
//hypermammut.sourceforge.net/paulstretch/.
Accessed: 2014-10-10.

[18] Responsive radio by bbc rd.
http://www.bbc.co.uk/programmes/p026gcms.
Accessed: 2014-10-10.

[19] Apple imac with retina display.
http://www.apple.com/imac-with-retina/.
Accessed: 2014-10-20.

[20] Granular synthesis - how it works and ways to use it.
http://goo.gl/JE0MbN. Accessed: 2014-10-08.

[21] Html5 granular. http://zya.github.io/granular/.
Accessed: 2014-10-07.

[22] Scroll sound grain function. https://github.com/
zya/scrollsound/blob/master/js/grain.js.
Accessed: 2014-10-20.

[23] setinterval. https://developer.mozilla.org/en-US/
docs/Web/API/WindowTimers.setInterval. Accessed:
2014-10-10.

[24] A tale of two clocks - scheduling web audio with
precision. http://goo.gl/gJuBue. Accessed:
2014-10-08.

[25] Requestanimationframe. http://goo.gl/raIzXb.
Accessed: 2014-10-10.

[26] window.onscroll. https://developer.mozilla.org/
en-US/docs/Web/API/window.onscroll/. Accessed:
2014-10-07.

[27] Element.scrolltop. https://developer.mozilla.org/
en-US/docs/Web/API/Element.scrollTop. Accessed:
2014-10-07.

[28] iscroll.js by matteo spinelli.
https://github.com/cubiq/iscroll/. Accessed:
2014-10-07.

[29] Scroller.js by zynga.
https://github.com/zynga/scroller. Accessed:
2014-10-07.

[30] Skrollr.js. https://github.com/Prinzhorn/skrollr.
Accessed: 2014-10-07.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/bgsound
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/bgsound
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
http://webaudio.github.io/web-audio-api/
https://www.soundtrap.com/
http://cabbi.bo/weirdkids/
https://developer.mozilla.org/en-us/docs/web/api/canvas_api/
https://developer.mozilla.org/en-us/docs/web/api/canvas_api/
https://www.khronos.org/webgl/
http://dev.w3.org/csswg/css-animations/
http://www.w3.org/TR/webrtc/
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
http://goo.gl/xajPUR
http://whitevinyldesign.com/floradrift/
http://www.georgeandjonathan.com/#1
https://github.com/zya/scrollsound
https://www.youtube.com/watch?v=DTzOWKaDrVI 
http://hypermammut.sourceforge.net/paulstretch/
http://hypermammut.sourceforge.net/paulstretch/
http://www.bbc.co.uk/programmes/p026gcms
http://www.apple.com/imac-with-retina/
http://goo.gl/JE0MbN
http://zya.github.io/granular/
https://github.com/zya/scrollsound/blob/master/js/grain.js
https://github.com/zya/scrollsound/blob/master/js/grain.js
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setInterval
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setInterval
http://goo.gl/gJuBue
 http://goo.gl/raIzXb
https://developer.mozilla.org/en-US/docs/Web/API/window.onscroll/
https://developer.mozilla.org/en-US/docs/Web/API/window.onscroll/
https://developer.mozilla.org/en-US/docs/Web/API/Element.scrollTop
https://developer.mozilla.org/en-US/docs/Web/API/Element.scrollTop
https://github.com/cubiq/iscroll/
https://github.com/zynga/scroller
https://github.com/Prinzhorn/skrollr

	Introduction
	Usecases
	Interactive Music Experiences
	Music Composition Tool
	Other

	Technical Overview
	Granular Synthesis Engine
	Interaction Model
	Scrolling Libraries
	Event Handling

	Conclusions and Future Work
	References

