
Delivering Object-Based 3D Audio Using The Web Audio
API And The Audio Definition Model

Chris Pike
BBC Research & Development

Dock House, MediaCiyUK
Salford, UK

chris.pike@bbc.co.uk

Peter Taylour
BBC Research & Development

Dock House, MediaCiyUK
Salford, UK

peter.taylour@bbc.co.uk

Frank Melchior
BBC Research & Development

Dock House, MediaCiyUK
Salford, UK

frank.melchior@bbc.co.uk

ABSTRACT
This paper presents an application that demonstrates object-based
3D audio rendering in the web browser using the Web Audio API.
The application loads audio files containing object-based meta-
data and provides head-tracked dynamic binaural rendering of the
content to create an immersive 3D audio experience for
headphone listeners. The user can interact with the rendering by
muting individual audio objects and switching between the
binaural rendering mode and conventional stereo rendering.

This application demonstrates the future of broadcast sound
experiences over the web, where immersive content is rendered on
the client and can be adapted to listener context, as page layout is
adapted to device context today with responsive design.

Categories and Subject Descriptors
H.5.1: [Multimedia Information Systems] Audio input/output

General Terms
Algorithms, Experimentation, Human Factors, Standardization,
Verification.

Keywords
Object-Based Broadcasting, Web Audio API, Audio Definition
Model

1. INTRODUCTION
The BBC is working to provide more immersive and engaging
media experiences for its audiences. Towards this goal, a topic of
research interest in recent years has been 3D audio. Producing
programmes in surround sound with an added sense of height and
depth. This field of research is well developed and there is a wide
range of techniques available e.g. [1][2][3].
This work has led to the development of object-based audio
formats, where programme sound is delivered as separate
elements with audio essence and accompanying time-varying
meta-data to describe its role in the overall scene [4][5]. An
object-based approach enables delivery of 3D audio in a format
independent of the reproduction system and allows rendering
decisions to be made by the client, which can tailor the
reproduction to best create the intended experience on the

listener’s equipment. In a heterogeneous media environment, this
will allow a content creator to produce and distribute programmes
in one format, rather than manually rework content for each
targeted reproduction scenario.

The Web Audio API [6] presents a means of realising this idea
over the web. This paper presents an application that demonstrates
object-based 3D audio rendering in the web browser using the
Web Audio API. The application loads audio files containing
object-based meta-data described using a new model called the
Audio Definition Model (ADM) [5]. Using this meta-data it
provides head-tracked dynamic binaural rendering of the content
to create an immersive 3D audio experience for headphone
listeners. The user can interact with the rendering by muting
individual audio objects and switching between the binaural
rendering mode and conventional stereo rendering.

This application demonstrates the future of broadcast sound
experiences over the web, where immersive content is rendered on
the client and can be adapted to listener context, as page layout is
adapted to device context today with responsive design. It also
serves to demonstrate the capabilities of the ADM for
representing advanced audio formats.

2. 3D BINAURAL AUDIO
In conventional stereo panning the position of a sound source is
controlled by adjusting the relative amplitude in the left and right
channels [7]. When played on stereo loudspeakers this creates a
simple but effective approximation of the inter-aural level
difference changes that provide a psychoacoustic cue to sound
source location in the horizontal plane. However when played on
headphones conventional stereo panning creates an inside-the-
head impression [8].

In contrast binaural rendering aims to recreate the complex effect
that the human body has on a sound reaching the auditory system
from a defined 3D position, to create a more realistic spatial
impression for the listener. This involves frequency-dependent
time and level differences between the left and right ears due to
the scattering of a sound source off the human anatomy, notably
the head and outer ears (pinnae) [9].

For any sound source at particular location relative to the listener
these psychoacoustic cues are captured in a head-related transfer
function (HRTF). By applying an HRTF to a sound source signal
and reproducing the result on headphones, one can create the
impression of the sound coming from this position [10].
Commonly a set of HRTFs measured at a range of source
directions with constant distance is used to create a 3D binaural
panner, with control of source azimuth and elevation. HRTFs vary
for each individual due to their unique morphology but
approximate localisation cues can be created with a generic HRTF

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

set [11]. The HRTF set can have a significant effect on timbral
and spatial quality of the listening experience [12].

The spatial impression of a binaural rendering can be improved by
using head tracking. When the listener rotates their head, the
tracking data is used to change the selected HRTFs in order to
maintain constant perceived sound source position. Without head
tracking the perceived location of binaurally rendered sound will
rotate with the head. Head tracking improves plausibility but also
leads to fewer front-back confusions and a better sense of out-of-
the-head impression [13].

Binaural reverberation is also important for sound externalisation
in binaural rendering [14]. This could be created with measured
binaural room impulse responses but an artificial binaural
reverberator would be more efficient, such as in [15]. Such a
reverb could potentially be built from existing Web Audio
components i.e. BiquadFilterNode, GainNode, and DelayNode
objects.

2.1 3D Audio in the Web Audio API
The Web Audio API has a 3D audio engine using a global listener
model, the AudioListener interface, and PannerNode objects to
represent sound sources within an AudioContext instance. Each
PannerNode object uses the position and orientation of the
AudioListener as well as its own position and orientation during
rendering to calculate rendering cues for distance and direction.
Different distance and direction models can be chosen. Direction
cues are provided using the panning models which convert a one-
channel input to a two-channel output, either using equal power
amplitude panning or HRTF panning.
Although PannerNode objects always incorporate the source and
listener 3D positions and orientations, equal power panning mode
can only give the impression of sounds moving between the left
and right ears when listening on headphones. The HRTF panning
model of the PannerNode allows true 3D positioning of sounds for
headphone listeners using the binaural technique. The HRTF set is
currently fixed in the browser implementation, it cannot be
changed by the web application developer and is not standardised
as part of the Web Audio API specification. Currently the authors
use a custom build of the Chromium browser [16] with their own
chosen HRTF set to achieve the desired sound quality. Future
versions of the Web Audio API could support provision of a
SOFA file [17] containing a set of HRTF measurements for use in
the HRTF panner, allowing developers greater control over
rendering quality or even personalisation for the individual
listener.

Distance cues are created using one of a set of simple gain decay
functions. Gain changes due to source directivity can also be
controlled using a simple “sound cone” model common to game
audio engines. These features are useful in interactive gaming
applications, but for rendering of object-based 3D audio
programmes the level of each object should be set in the audio
essence itself to ensure that the creative intent of the producer is
conveyed. Therefore in this application these features are turned
off.

3. ADM & BROADCAST WAVE FORMAT
The Audio Definition Model (ADM) is a recently published meta-
data model for describing audio formats [5]. It can be included in
an audio file to explicitly describe the format of content contained
in the file, enabling an application to handle it appropriately.

The conventional way of representing audio content is a channel-
based approach where the reproduction method is implicit in the

content format. For example, a two-channel audio file implies that
the content should be reproduced on a stereo pair of loudspeakers
placed in front of the listener at ±30˚ azimuth. With the
development of many varieties of multichannel audio for surround
sound the meaning of each channel has become ambiguous. The
ADM introduces explicit description of channel-based audio
formats, defining the role of each channel. Known loudspeaker
layouts can be referenced or novel layouts can be described using
3D coordinates. If the specified loudspeaker layout is not
available for reproduction, this enables the content to be adapted
appropriately to the system available.

Figure 1 - Screenshot of the application’s playback interface
The ADM can also describe object-based content. Here the
streams of audio content no longer correspond directly to intended
loudspeaker positions rather elements within the scene that have a
descriptive label and a specified set of meta-data including its
position; these can also vary over time. An object-based audio
programme might contain, for example, a collection of objects
relating to the instruments in a musical ensemble, or the dialogue
and effects elements of a drama.

The web application presented in this paper uses the object-based
part of the ADM to describe programmes stored in Broadcast
Wave Format (BWF) files. The BWF is an extension to the
WAVE format, containing additional header chunks, designed to
facilitate interchange within the production environment [18]. The
axml header chunk enables carriage of ADM meta-data in XML
[19].

Time varying positions of objects within the programme are
contained within blocks of meta-data. Each block provides the
rendering instruction for an object for a specified duration of time.
For example, a block of meta-data could describe the position of
an object for 10 seconds into the performance, at which point a
second block could specify the position of the object for the next
30 seconds.

4. ADM OBJECT-BASED AUDIO PLAYER
A web application has been built to play 3D audio programmes
from BWF files containing ADM meta-data. The audio output is
rendered according to the ADM meta-data in real-time on the
client-side using the Web Audio API. Figure 1 shows the user
interface presented to the listener on playback of a file.

In addition to playback controls, the application offers a timeline
visualisation in an HTML5 canvas, where each block of meta-data
is represented by a coloured rectangle and the active blocks are
highlighted. The current position of each object is set in a
PannerNode and is also displayed in a 3D visualisation of the
scene using THREE.js [20], with the listener at the origin. The
objects are represented by spheres with colours matching the
timeline visualisation. The interface allows users to switch
between stereo and binaural playback and calibrate a head
tracking system.

The client-server application structure is pictured in 2. To
reproduce a programme the renderer must interpret the ADM
meta-data. This is handled by JavaScript code, running client-side
in the browser. This data is then used to control the Web Audio
API processing, which produces a real-time stereo or head tracked
binaural rendering of the programme, depending on the selected
option.

The user can upload BWF files to the application server, where
they are parsed and processed for use in a browser client. The
server is written in python using the Flask framework [21]. The
ADM meta-data is extracted from the header and parsed on the
server using an open-source python library [22]. The XML is
converted to JSON and stored in an SQLite database [23]. The
SoX audio manipulation tool [24] is then used to split the BWF
audio tracks, which are stored as separate WAVE files. This step
is required because existing browser implementations were found
to limit the number of tracks that could be decoded in a single file
when using the AudioContext’s decodeAudioData method. This
limitation is not specified in the Web Audio API itself.

A user can select any uploaded and parsed programme using the
file selection interface. The client application then loads the
associated one-track audio files and JSON meta-data from the
server.
 The JavaScript client uses two main components to render the
programme, an AudioObject class and a Scheduler class. An
AudioObject instance is created for each audio track extracted
from the original BWF file. Each instance holds a single
AudioBufferSourceNode and the processing nodes required to
render the audio. A single Scheduler instance produces a schedule
of rendering instructions from the JSON meta-data and then
controls the render on playback, setting attributes of the Web
Audio API nodes.

Figure 2 - Client-server application structure

4.1 Setting up the Node Graph
The Web Audio node graph is constructed by creating instances of
the AudioObject class. Instantiating an AudioObject creates an
AudioBufferSourceNode connected to a GainNode and a
PannerNode. The PannerNode is then connected to the
AudioDestinationNode. The AudioObject class provides methods
for updating attributes such as the GainNode gain and the
PannerNode panningModel, and position. The methods perform
transformations between the ADM and Web Audio coordinate
systems where required and handle scheduling of attribute updates
in advance.

On loading a file the client creates an AudioObject instance for
each track in the BWF file. A recording of a musical ensemble,
for example, might contain an audio track for each instrument,
accompanied by ADM meta-data describing how each instrument
should be rendered. In this case an AudioObject instance would
be created for each instrument and the corresponding BWF track
decoded and attached to the AudioBufferSourceNode buffer. The
resulting node graph is a collection of AudioObjects, each
containing an AudioBufferSourceNode, GainNode and
PannerNode, then connected to the AudioDestinationNode.

4.2 Building a Schedule
Before playback can commence the client must process the meta-
data received from the server and create a schedule of timed
rendering instructions to give to the Web Audio nodes at the
appropriate times during playback, this is done by the Scheduler
class.

Within the ADM, blocks of meta-data that refer to a single audio
channel are grouped together by reference to the same
AudioChannelFormat identifier. With object-based audio each

Figure 3 - Illustration of the link between ADM elements and JavaScript objects in the web application

AudioChannelFormat represents an audio object and has a list of
metadata instructions describing time-varying rendering
parameters.

Each AudioChannelFormat is linked back to a track in the BWF
file via a table within the header called the Channel Allocation
Chunk, as illustrated in Figure 3. The data in the Channel
Allocation Chunk is used to link meta-data blocks with the correct
AudioObject instance in the application, so that the rendering
instructions relate to the audio asset they were intended for. The
Scheduler makes a link between each meta-data block and the
corresponding AudioObject and then sorts these rendering
instructions chronologically. This process is illustrated in Figure
4. The result is a list of timed instructions, each with reference to
an AudioObject.

4.3 Accurate Playback Scheduling
A key problem addressed by the Web Audio API is the inability to
accurately schedule JavaScript events in the browser. Without
accurate timing, correctly producing an audio rendering from a
schedule of events would not be possible.

As the Web Audio API offers sample accurate scheduling outside
of the main JavaScript execution thread, setting the start time of
an AudioObject’s AudioBufferSoundNode relative to the
AudioContext.currentTime property is sufficient to ensure an
entirely reproducible and accurate render of the ADM
instructions.

To avoid the inflexibility that would be caused by scheduling all
events in advance on starting playback, regular calls to setTimeout
during playback are used to add small chunks of the schedule to
the Web Audio event queue [25]. This method ensures that only
imminent events are scheduled in the AudioContext itself and
enables playback functions such as pause and rewind to be neatly
implemented. To ensure that delays to the JavaScript event-loop
will not cause events to be missed, each call to the Window
setTimeout method schedules events occurring after the next
timeout is due to occur.

The AudioBufferSourceNode’s start method provides an attribute
for scheduling playback ahead of time, and the AudioParam
setValueAtTime method is used to queue updates to the
GainNode. This approach cannot be used to set the position
parameters of the PannerNode as they do not use the AudioParam
interface but must be set instantaneously through the PannerNode
setPosition method. A setTimeout callback is used instead,
therefore accurate timing of object position changes cannot be
guaranteed.

Figure 4 - Creating the playback schedule for the renderer
(right) from AudioObject meta-data (left)

4.4 Head Tracking
To improve the spatial impression in the web application, it
interfaces with a head-tracking device. The tracker’s orientation
data are used to adjust the orientation of the Web Audio API’s
AudioListener to match the rotations of the user. The position of
the AudioListener is used by the Web Audio API to adjust the
panning of objects such that sound stage remains stationary.

In this prototype, the tracker runs in a small standalone C++
application on the client machine and sends head orientation data
to the web browser using a simple WebSocket interface [26]. An
inertial tracking device is currently used [27], connecting via
USB. Different trackers could also be used provided that the same
WebSocket interface is implemented.

The use of head tracking applies a constraint on the latency of the
system, to prevent distracting delay when the sound scene is
updated according to head movement. Lindau found that a latency
<53ms was not detectible by any experienced listener [28].
Besides processing latency in the Web Audio API and the head
tracking hardware, the WebSocket and head tracker connection
interface will add further latency, for example state-of-the-art
consumer head tracking devices use a Bluetooth LE connection,
e.g. [29].

5. DISCUSSION
The Web Audio API is used to create a client-side renderer for the
BWF audio file format with accompanying ADM meta-data. The
prototype provides a proof-of-concept example of how the web
could be used deliver object-based audio to a large audience. It
also successfully demonstrates use of the browser as a possible
rendering device, with support for playback of 3D audio content
binaurally rendered over headphones.

If the browser is to be considered as a rendering device for object-
based audio it must be able to accurately control playback of
individual audio assets and follow time-varying meta-data
describing the performance. The BWF programme material tested
is rendered with the appropriate spatial layout and timing.
However in its current state the Web Audio API does not offer the
quality and performance required for a full object-based rendering
client. Accurate timing of object position changes cannot
currently be guaranteed and the quality of binaural rendering is
strongly influenced by the HRTF dataset used in the browser
implementation.

In its current form the web application uses the GainNode and
PannerNode objects to render sound according to the ADM meta-
data describing the volume and position of an object. Additional
features for the ADM player application could be added in the
future using existing Web Audio features. Custom panning could
also be implemented using an AudioWorker to extend rendering
to multichannel loudspeaker systems, perhaps even for arbitrary
speaker layouts.

To deliver live object-based broadcasts over the web it would be
necessary for the application to support streaming. Media Source
Extensions [30] could be used with the Web Audio API
MediaElementAudioSourceNode to allow streaming, as in [31].

The application could be of use as a framework for future research
into delivering new audio formats and in development of new user
experiences that take advantage of the benefits object-based
broadcasting and the Web Audio API.

6. CONCLUSION
The Web Audio API makes it possible to render object-based 3D
audio in a web browser without requiring plug-ins. A prototype

application has been presented which demonstrates these
capabilities and the features of the API that are used. The server-
client application parses and renders BWF files that use the ADM
object-based format description. The Web Audio API is used to
control the gain and position of audio objects rendered either
using conventional stereo equal-power panning and or to 3D
binaural audio using HRTF panning and head tracking. The
application changes the rendering parameters in real-time during
playback according to a schedule of object-based meta-data
instructions.

The application could be further developed to provide more
object-based 3D audio features using existing Web Audio
functionality. In the future the Web Audio API could be improved
to allow the developer more control over the accuracy and quality
of object-based 3D audio rendering.

7. REFERENCES
[1] Pulkki, V. 1997. Virtual Sound Source Positioning Using

Vector Base Amplitude Panning. Journal of the Audio
Engineering Society, 45(6), 456–466.

[2] Daniel, J. 2003. Spatial sound encoding including near-field
effect: Introducing distance coding filters and a viable, new
ambisonic format. Proceedings of the 23rd International
Conference of the Audio Engineering Society (Copenhagen,
Denmark, May 2003).

[3] Jot, J.-M. 1999. Real-time spatial processing of sounds for
music, multimedia and interactive human-computer
interfaces. Multimedia Systems, 7(1), 55–69. DOI=
http://dx.doi.org/10.1007/s005300050111

[4] Armstrong, M., Brooks, M., Churnside, A., Evans, M.,
Melchior, F. and Shotton, M. 2014. Object-based
broadcasting – curation, responsiveness and user experience,
Proceedings of IBC2014 (Amsterdam, September 2014).

[5] EBU. 2014. Tech 3364: Audio Definition Model.
https://tech.ebu.ch/docs/tech/tech3364.pdf

[6] Web Audio API. W3C Working Draft.
http://www.w3.org/TR/webaudio/

[7] Blumlein, A. 1932. Improvements in and relating to sound-
transmission, sound-recording and sound-reproducing
systems. GB Patent 394 325.

[8] Toole, F. E. 1970. In-Head Localization of Acoustic Images.
Journal of the Acoustical Society of America 48(4), 943–949.
DOI= http://dx.doi.org/10.1121/1.1912233

[9] Møller, H. 1992. Fundamentals of binaural technology.
Applied Acoustics, 36(3–4), 171–218. DOI=
http://dx.doi.org/10.1016/0003-682X(92)90046-U

[10] Wightman F. L. and Kistler, D. J. 1989. Headphone
simulation of free-field listening. II: Pyschophysical
validation. Journal of the Acoustical Society of America
85(2), 868–878. DOI= http://dx.doi.org/10.1121/1.397558

[11] Møller, H., Sørensen, M. F., Jensen, C. B., and Hammershøi,
D. 1996. Binaural Technique: Do We Need Individual
Recordings? Journal of the Audio Engineering Society 44(6),
451-469.

[12] Merimaa, J. 2009. Modification of HRTF Filters to Reduce
Timbral Effects in Binaural Synthesis. Proceedings of 127th
AES Convention (New York, USA, October 2009).

[13] Brimijoin, W. O., Boyd, A. W., and Akeroyd, M. A. 2013.
The contribution of head movement to the externalization
and internalization of sounds. PLoS One 8(12) (January
2013). DOI= http://dx.doi.org/10.1371/journal.pone.0083068

[14] Begault, D. R., Wenzel, E. M., & Anderson, M. R. 2001.
Direct Comparison of the Impact of Head Tracking,
Reverberation, and Individualised Head-Related Transfer
Functions on the Spatial Perception of a Virtual Speech
Source. Journal of the Audio Engineering Society, 49(10),
904-916.

[15] Jot, J.-M., Larcher, V., & Warusfel, O. 1995. Digital Signal
Processing Issues in the Context of Binaural and Transaural
Stereophony. Proceedings of 98th Convention of the Audio
Engineering Society (Paris, France, February 1995).

[16] Chromium browser. http://www.chromium.org/
[17] Majdak, P. et al. 2013. Spatially Oriented Format for

Acoustics: A Data Exchange Format Representing Head-
Related Transfer Functions. Proceedings of 134th Convention
of the Audio Engineering Society (Rome, Italy, May 2014).

[18] EBU. 2011. Tech 3285: Specification of the Broadcast Wave
Format. https://tech.ebu.ch/docs/tech/tech3285.pdf

[19] EBU. 2003. Specification of the Broadcast Wave Format A
format for audio data files in broadcasting Supplement 5:
<axml> Chunk. https://tech.ebu.ch/docs/tech/tech3285s5.pdf

[20] three.js JavaScript library. http://threejs.org
[21] Flask python framework. http://flask.pocoo.org

[22] BBC R&D ADM XML python library.
https://github.com/bbcrd/adm_xml

[23] SQLite3 database library. http://www.sqlite.org

[24] SoX - Sound eXchange audio processing software.
http://sox.sourceforge.net

[25] Wilson, C. 2013. A Tale of Two Clocks - Scheduling Web
Audio with Precision. HTML5Rocks. Web resource accessed
on 22nd October, 2014:
http://www.html5rocks.com/en/tutorials/audio/scheduling/

[26] The WebSocket Protocol. Internet Engineering Task Force
RFC6455. Web resource accessed on 23rd October, 2014:
https://tools.ietf.org/html/rfc6455

[27] Razor Attitude and Heading Reference System.
https://github.com/ptrbrtz/razor-9dof-ahrs

[28] Lindau, A. 2009. The Perception of System Latency in
Dynamic Binaural Synthesis. Proceedings of NAG/DAGA
2009 (Rotterdam, The Netherlands, March 2009).

[29] Intelligent Headset. https://intelligentheadset.com/

[30] Media Source Extensions. W3C Editor's Draft.
https://dvcs.w3.org/hg/html-media/raw-file/tip/media-
source/media-source.html

[31] Pike, C., Nixon, T., Evans, D. 2014. Under Milk Wood in
Headphone Surround Sound. BBC R&D Blog. Web resource
accessed on 23rd October, 2014:
http://www.bbc.co.uk/rd/blog/2014-10-under-milk-wood-in-
headphone-surround-sound

