
Quint.js: A JavaScript library for teaching music
technology to fine arts students

Ian George Burleigh
Dept. of Music, Digital Audio Arts

University of Lethbridge
4401 University Drive

Lethbridge, AB T1L 3M4, Canada
ian.george.burleigh@gmail.com

Thilo Schaller
Dept. of Music, Digital Audio Arts

University of Lethbridge
4401 University Drive

Lethbridge, AB T1L 3M4, Canada
thilo.schaller@uleth.ca

ABSTRACT
This paper presents quint.js, a JavaScript library for mak-
ing interactive HTML/SVG/Web Audio “applets”. Two-di-
mensional geometric structures (“machines”) that are based
in SVG vector graphics with audible feedback synthesized
through Web Audio are used to demonstrate various phys-
ical, acoustic, and psychoacoustic phenomena and are ap-
plied in teaching music technology courses to fine arts stu-
dents. The current core quint.js library and extension
modules are a starting point for more extensive integration
of Web Audio to support the delivery of course content and
for the creation of integrated, interactive lecture notes.

Categories and Subject Descriptors
[Applied computing]: Computer-assisted instruction;
Sound and music computing; Interactive learning environ-
ments.

General Terms
Design, Human Factors.

Keywords
Audio arts, audio engineering, instruction, ear training, Web
Audio, SVG, JavaScript.

1. INTRODUCTION
Technological changes in storage, processing, and delivery

of information are forcing fundamental changes in education,
especially in higher education. Printed books and physical
audio-visual media are being replaced by “digital libraries”
with learning materials that are delivered to computing de-
vices — notebooks and tablets. In a “hybrid classroom”,
the traditional teacher-student relationship is changing into
“hybrid pedagogy”, a concept that can be described as “hy-
brid learning” happening in the classroom and online, in “an
intersection of physical and virtual learning space” [2].

Copyright c© 2015 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.

HTML5 and related web technologies support the devel-
opment of cross-platform multimedia applications that run
in standard-compliant web browsers. This opens a possi-
bility for creating interactive materials that combine both
linear and non-linear1 learning, that can be accessed any-
where on almost any computing device without the need to
install additional software.

Digital Audio Arts at the University of Lethbridge is a
Bachelor of Music program that prepares students for work
in “sonic arts” — audio engineering and production, compu-
ter-assisted music, electroacoustic music composition, and
related areas of music technology [1]. The students work
within a fine arts environment and as such have affinity
for arts rather than for sciences and engineering. How-
ever, depending on their field of specialization, they still
have to comprehend fundamental concepts of Euclidean ge-
ometry, Newtonian physics, acoustics, psychoacoustics, and
‘harmonics’ (i.e., the science of musical sound, specifically
issues of tuning, timbre, and temperament [3, 15]). The
students work with microtonality in computer-assisted mu-
sic composition and performance — a modern sonic artist
is “not a musician, but a worker in frequencies and intensi-
ties” [17]. They also have to acquire vocational skills needed
for audio engineering such as the ability to identify bands
of the audible frequency spectrum, critically assess sonic re-
sults of signal processing, or to recognize flaws in recorded
or synthesized sound.

In this learning environment, teaching of scientific con-
cepts and training of vocational skills are most effective
through intuitive auditory and/or visual demonstration and
experimentation. The audio synthesis and processing ca-
pacity of Web Audio in combination with SVG graphics is a
platform for development of interactive, animated“applets”2

with audible feedback that serve as efficient learning tools.

2. QUINT.JS
quint.js (Quint3) is a medium-sized JavaScript library.

In its “minified” form, Quint is about 30kB in size.

1Linear learning follows the classic “textbook”, step-by-step
sequence. In non-linear learning there are multiple possible
paths through hyper-linked materials.
2The term ‘applet’ is used here simply as “a small appli-
cation (program) placed on a web page”; by itself it is not
meant to imply any particular software technology or archi-
tecture.
3Shortened from quinta, a name for the perfect fifth (musical
interval).

The purpose of Quint is to support and simplify the cre-
ation of two-dimensional interactive geometric structures in
SVG (within the HTML <svg> tag), such as one would make
in the past, for example, on paper using a compass and
a ruler, or in a graphing calculator. To synthesize sound,
Quint originally required a local running instance of Csound
[18] that was controlled through Web Sockets connection and
a custom-made minimal Web Sockets server. The introduc-
tion of Web Audio was the “last piece of the puzzle” that
was needed to run everything in a browser; now only Quint
and supporting JavaScript modules (Quint relies on d3.js

[4] to manipulate DOM elements) are required to deliver all
audio-visual content.

Quint is a free software, released under the MIT licence
on GitHub.4 Tutorials, documentation, and examples are
available on the Quint website [5].

A Quint applet is embedded into an HTML page through
a named <div> or element. Everything else — the
SVG container, SVG groups and elements, as well as other
HTML elements — are created by manipulating the DOM
from JavaScript code.

Quint consists of several modules. The core module
(quint.js) contains:

• Code that sets up the main applet container, its ge-
ometry, visual appearance (border, title, etc.), and a
container for optional user interface elements (HTML
<input>).

• Code for manipulation of SVG elements and their at-
tributes, SVG groups and nested groups.

• Handlers of interactive interface events; in particular,
mouse events.

• Code that supports 2D vector algebra operations; work
with Cartesian and polar coordinate systems, local and
global coordinates, affine transformations, etc.

• Various helper functions for easier programming, such
as support for classical class inheritance, functional-
style iterators, and debugging functions.

The interactivity of Quint applets is based on a simple
concept: selected SVG elements can be made “movable”.
Movable elements respond to mousedown (click) and mousemove

(drag) events. A handler function associated with a movable
element can, in response, programmatically move or other-
wise manipulate other elements; the positions of each mov-
able element can be constrained to a particular area, set of
positions, a path, etc.

The core Quint module supports handling of the SVG el-
ements ellipse, circle, line, rect, and path, operations
that set or retrieve their geometric and visual attributes (po-
sition, radius, size, stroke and fill colours, width, etc.) and
operations of vector algebra specifically related to the geom-
etry of the respective elements. The path element is used to
construct spline curves through a sequence of points (Carte-
sian coordinates) that can be scaled and translated within
the coordinate space. (The typical use of spline curves is
to display wave shapes.) SVG text elements can be added
as labels or annotations. Finally, the SVG foreignObject

4https://github.com/quinta-audio/quint.js

element can be used to include HTML elements, namely
HTML canvas.5

The core module also provides a set of frequently used
abstractions, for example the construction of grid lines, or
user interface elements implemented in SVG such as movable
“handles” for user interaction, sliders, or checkboxes.

The Quint user interface module (quint_ui.js) supports
HTML (<input>) elements: button, radio, checkbox, number
and range, and their interaction with the SVG elements.
The audio (quint_audio.js) module contains various wrap-
per and helper functions for Web Audio.

Quint has several extension modules that contain code
that had been first developed for a specific purpose and then
abstracted as a generic solution:

• Waveforms (quint_waves.js): code that constructs
spline curves in the shape of sinusoidal waves specified
by their frequency, amplitude, and phase and com-
plex waves synthesized as a superposition of compo-
nent (partial) sinusoidal waves.

• Max/Pd-like [13] data-flow“patcher”(quint_patcher.js):
an abstraction of movable boxes (nodes) with inlets,
outlets, and user interface that can be connected by
audio signal and events-carrying “patch cords” to cre-
ate a data-flow network.

• A set of “unit generators” (quint_ugens.js) for use
in a patcher: various types of oscillators, number con-
trols, sliders, gain controls, oscilloscope, etc.

3. EXAMPLE APPLETS
The following paragraphs describe selected applets that

were created for use in Digital Audio Arts courses:

3.1 Circular Motion
Fig.1 shows an applet that is used to demonstrate several

fundamental principles of trigonometry and wave motion:
the relations between circular motion and simple harmonic
motion, angular and temporal frequency, right-angled trian-
gle inscribed into a unit circle, sine and cosine values, etc.
All these concepts are essential for the delivery of acoustics,
sound synthesis, and audio production courses. The yellow
handle (a small disc) can be moved around the perimeter of
the unit circle on the left and the sine and cosine waveforms
are updated accordingly.

Figure 1: Circular Motion applet

5As of writing this text, using foreignObject is slightly
problematic. See https://code.google.com/p/chromium/
issues/detail?id=371724.

3.2 Additive Synthesis
The applet in Fig.2 demonstrates how complex, band-

limited waveforms are synthesized from a series of partials
(partial simple waveforms). The user can adjust the ampli-
tude and phase of each partial by dragging the corresponding
handles. The constructed complex wave is displayed in the
top part of the applet; the audible result is synthesized by
a bank of Web Audio oscillators and delay lines.

The user can choose from several waveform presets (sine,
triangle, rectangular, and sawtooth wave) or create an ar-
bitrary waveform by changing the amplitudes and phases
of each partial. The combination of visual and auditory
presentation offers an intuitive approach to associate wave
shapes with timbre (“sound colour”) and helps students to
recall the relative amplitudes and phases of the partials that
constitute common waveforms.

Figure 2: Additive Synthesis applet

3.3 Fourier
This applet is the first one in a planned series of applets

to demonstrate the principles of Fourier analysis in terms
that are accessible to music students. The applet is com-
plementary to the Additive Synthesis applet and offers the
following intuitive explanation of continuous Fourier trans-
form:6 A complex (periodic) waveform has been synthesized
by adding a number of simple sinusoidal waves. The task
is to isolate the component waveforms and thus break the
complex waveform into the original set of sinusoidal waves
(“partials”). The complex waveform (its selected part) is
multiplied by a “probe” sinusoidal wave and the product is
“integrated” (summed). Finding a positive local maximum
by varying the probe wave frequency and phase means that
a component of the complex waveform has been located.

Fig.3 shows the relevant part of the applet: the synthe-
sized waveform, the probe sinusoidal wave — its ampli-
tude, frequency, and phase — and the wave product with
an orange-coloured indicator that shows its positive magni-
tude.

Synthesis by a bank of oscillators and delay lines (to con-
trol the phase of component waves) through Web Audio
provides an auditory feedback. As the probe wave begins
to match a component wave, auditory “beats” can be heard.
Eliminating the beats, in a process similar to tuning of mu-
sical instruments, corresponds with isolating the component

6S(f) =
∫∞
−∞s(t) · e−iωt dt

wave. This exercise naturally contributes to the develop-
ment of listening skills while learning a theoretical concept.

Figure 3: Fourier applet

3.4 Pitch Spiral
The “pitch spiral” applet, shown in Fig.4, is used not only

to demonstrate but mainly to experiment with aspects of
the psychoacoustical theory of sensations of tone, a major
work of H. Helmholtz [8]. The theory can be summarized
as follows: Complex musical tones are formed from a series
of simple tones. The interference of two simple tones is
perceived as beats (variations of the aggregate amplitude) if
the difference of frequencies is below a threshold of approx.
16 Hz, as an unpleasant sensory roughness if the difference
is around 30 Hz, and as a difference tone if the frequency
difference is higher than that. Tuning two or more complex
tones into a pleasant sonority requires that the aggregate
sensory roughness among pairs of their constituting simple
tones is minimized.

Figure 4: Pitch Spiral applet

The spiral represents a flattened helical model of musical
pitch. Each turn of the spiral (in the inside-out direction)
corresponds to raising the pitch by one octave. Various po-
lar grids can be overlaid on the spiral, indicating: a) the
pitches of twelve (shown in the figure), 31, 34, or 53-tone
equal division of the octave, b) pitches of various tuning
systems (Pythagorean, meantone, just), and c) chains of
fifths or thirds (the two musical intervals essential to West-
ern harmony) that can also be tempered at will. Coloured

discs represent the partials of several test complex tones; the
hollow small circles represent the various difference tones.
Fig.4 shows the partials and generated difference tones of
a major triad in 12-tone equal division of the octave; their
non-coincidence explains why an equally-tempered triad is
“strangely uneasy, and no wonder” [12].

The visual representation of the spiral pitch space with
complex tones and their constituting partials and difference
tones related to various theoretically-derived grids, together
with corresponding synthesized sound allows many experi-
ments by Helmholtz to be re-created in the browser.

3.5 Noise Spiral
The “noise spiral” (Fig.5) is a tool for one of the most

elementary stages of technical ear training: frequency band
recognition.

Especially for students with a focus on audio engineer-
ing, ongoing technical ear training is an essential activity.
Listening skills take time to develop; the Noise Spiral ap-
plet is designed to give students the opportunity for regular
practice.

Figure 5: Noise Spiral applet

For sound engineers, composers, and performers of elec-
tronic music, recognizing the sonic characteristics of a spe-
cific frequency band is an important skill whether working in
the recording studio or in a live sound environment. In both
environments, decisions on equalizer settings are made after
an aural assessment of the sound material and the identifica-
tion of excess or deficiency of energy within certain frequency
bands. In order to find the desired band, students are often
taught to raise the gain of an equalizer and swipe through
the frequency spectrum. However, the imagined sonic goal
might change or be lost due to the exposure to various al-

terations of the signal while searching for the desired part
of the spectrum [16]. Through experience and technical ear
training, the recognition of frequency bands can be accel-
erated and ideally the need for swipes eliminated [6]. Ap-
proaches to developing this skill often use filtered pink noise
in addition to musical material [7, 9, 11], to have a constant
presence of all frequency bands, which makes any changes
to the spectrum consistent and immediately audible.

The Noise Spiral has been created as a practice tool for
frequency band recognition to accelerate the development of
listening skills. The applet uses pink noise that is filtered by
a “peaking” Web Audio biquad filter. Students are asked to
identify the centre frequency of boosts or cuts. The user can
select the Q and gain of the filter and the type of the source
signal. Selecting the division of the octave (1/2, 1/3, . . .)
changes the number of frequency bands and decreases the
distance between adjacent steps, thus making the exercise
gradually more difficult.

The visualization of the frequency spectrum is based on
the same graphical model that is used for the Pitch Spiral.
The spiral optionally displays main formant areas of vow-
els. The relation to human speech appears to serve as a
valuable addition within ear training sessions and for many
beginning students, this additional visual and experience-
based reference acts as a shortcut to master the recognition
of frequency bands. While the system is currently based on
German vowels [10], other language overlays — such as En-
glish, Finnish, male/female [14] — are considered for future
updates.

In order to put the listening skills into a realistic context,
users can also import audio files for processing. This way,
one can decide to either work with individually recorded
instruments or a finished stereo mix and thus create a re-
alistic situation for application of the listening skills. The
goal of this feature is to enable students to identify frequency
bands within the spectrum of various sound sources in order
to address problems or, use sonic characteristics of specific
frequency bands of instruments for artistic purposes.

3.6 Patcher

Figure 6: Patcher

The Patcher is a proof-of-concept realization of a modular
audio synthesis toolkit. Its concept is based on the well-
known Max/Pd-like signal flow abstraction: graphical boxes
represent signal and data-processing “objects” with “inlets”
and “outlets” connected by “patch cords” [13].

The Patcher is being developed as an “extension” of the

quint.js library, using a number of its features. It drives
further development of Quint: for example, the support for
HTML canvas through SVG foreignObject was required to
implement the “oscilloscope” object.

The main, immediate purpose for Patcher is to illustrate
the fundamental principles of various audio synthesis meth-
ods, such as ring modulation (Fig.6).

4. CONCLUSIONS AND FUTURE WORK
The web browser platform and web technologies are ready

for integration of text, animated visual content and real-time
synthesized audio without relying on traditional technologies
external to the browser, such as Flash or Java.

We developed quint.js (Quint), a JavaScript library that
uses HTML5, SVG, and Web Audio and that provides a
number of abstractions that support efficient creation of
small interactive audio-visual programs (“applets”) that can
be embedded in other HTML content. Some implemen-
tation issues, namely cross-browser differences in handling
SVG foreignObject, remain to be resolved.

We used Quint to make several applets that demonstrate
various physical, acoustic, and psychoacoustic phenomena.
The applets were used for teaching music technology within
fine arts, and to support technical ear training for students
of audio engineering.

Our current work aims mainly to improve and further de-
velop the ear-training applets and extend their selection to
other types of signal processing related to audio engineering.
Students of audio engineering and other audio professionals
would use the applets to practise and improve their listening
skills in as many relevant areas as possible.

For future work we plan to use the applets in a larger con-
text of integrated “non-linear” lecture notes related to audio
arts. We hope that our pages may then be used by other
educators and students in various learning environments.

5. REFERENCES
[1] Bachelor of Music – Digital Audio Arts.

http://digitalaudioarts.ca.

[2] Hybrid pedagogy: a digital journal of learning,
teaching, and technology.
http://www.hybridpedagogy.com.

[3] A. Barker. Scientific Method in Ptolemy’s
‘Harmonics’. Cambridge University Press, 2001.

[4] M. Bostock, J. Heer, and V. Ogievetsky. D3.js:
A JavaScript library for manipulating documents
based on data. http://d3js.org/.

[5] I. G. Burleigh. Quint.js: A JavaScript library for
building simple 2D machines in SVG.
http://quinta.audio/Quint/.

[6] A. Case. Mix Smart: Pro Audio Tips for Your
Multitrack Mix. Mastering music. Focal Press, 2011.

[7] J. Corey. Audio Production and Critical Listening:
Technical Ear Training. Focal Press, 2010.

[8] H. Helmholtz. On the sensations of tone as a
physiological basis for the theory of music. Longmans,
Green, and Co., London, 1885.

[9] B. Katz. Mastering Audio: The Art and the Science.
Focal Press, 2007.

[10] J. Meyer. Acoustics and the Performance of Music.
Springer, 2009.

[11] D. Moulton. Golden Ears: An audio ear-training
course for recording engineers, producers and
musicians. http://www.moultonlabs.com.

[12] H. Partch. Barbs and broadsides. Percussive Notes,
Research Edition, 18(3), 1979.

[13] M. S. Puckette. Pure Data: An open source visual
programming language. http://puredata.info/.

[14] E. Sengpiel. Forum für Mikrofonaufnahmetechnik und
Tonstudiotechnik. http://sengpielaudio.com.

[15] W. Sethares. Tuning, Timbre, Spectrum, Scale.
Springer Verlag, London, 2005.

[16] M. Stavrou and W. Westbrook. Mixing with Your
Mind: Closely Guarded Secrets of Sound Balance
Engineering. Flux Research, 2003.

[17] E. Varèse and Alcopley. Edgard Varèse on music and
art: A conversation between Varèse and Alcopley.
Leonardo, 1(2):187–195, 4 1968.

[18] B. Vercoe, J. Fitch, V. Lazzarini, and I. Varga.
Csound: A sound design, audio synthesis, and signal
processing system. http://www.csounds.com/.

