
Streaming live content to web audio API 
 
 

 
 
 
 
 
 

ABSTRACT 

Web Audio API helps to manage sound through a web browser. 

In most cases, the input is a sound file, fully loaded from a server. 

Stored in the cache of the browser, it is then transformed using 

Web Audio API. 

But we can also want to work with segments of a file. For 

instance, when streaming live data, Web have to deal with a 

dataset of undetermined length. 

Categories and Subject Descriptors 

H.5.1: [Multimedia Information Systems] Audio input/output 

General Terms 

Experimentation, Standardization 

Keywords 

Live streaming, audio streaming, real-time processing 

1. LIVE CONCERTS 
During a live concert, our solution allows the customer to choose 

his listening position. One can then decide to stand in the crowd, 

but also to hear the concert from the singer’s standpoint, from the 

bass player, or from backstage. With a headset, the client will 

enjoy a binaural listening, hence creating a feeling of space. The 

various instrumental tracks will be sent to a multitrack flow in 

case s/he wishes want to work on instruments in separatly.  

2. TECHNICAL CONSTRAINTS 
The system require a live streaming system “from one to many” 

that can be multi-flow. It also requires a sounds system that allows 

audio-digital analysis on the client side. The user should though 

be able to use our technology without having to set up any third-

party application, and from a vast array of devices (desktop PC, 

smartphone, tablet). Web browsers and common web technologies  

are then an optimal solution, in order to achieve maximum 

availability and stability of time.  

 

 

3. STATE OF THE ART 
Adobe Flash is historical and the most widely used solution to 

collect and to analyze live audio streams in a browser. We 

nonetheless did not retain this technology because it was not 

available on most mobile and tablet devices. Moreover, this 

technology is proprietary and it does not match the standards of 

the web.  

Audio analysis, server based solutions like Sox, GStreamer, 

FFMPEG have not been retained either. Since each session is 

potentially different (it depends on the interactions of the user); 

hence it requires its own flow and analysis. Moreover, the server 

resources that will be needed in the process are hard to estimate 

with such a technology. Finally, this solution requires much more 

server resources than a standard flow diffusion. 

4. TECHNOLOGICAL CHOICES 

4.1 Audio processing 
Web Audio API is a native browser API and a web standard.  

4.2 Streaming 

4.2.1 Streaming format 
Before beginning to expose what was done in this demonstration, 

first we would like to explain the limits to adaptive streaming 

formats. 

For this project, we needed to use 'adaptive streaming format' in 

order to offer the best quality experience to the end user. Adaptive 

streaming (also know as ABR streaming), is today's standard to 

deliver video to the end user by detecting a user's Bandwidth/CPU 

capacity in real time and adjusting the quality of the video stream 

accordingly (figure 1) : 

 

[Figure 1 : Adaptative streaming] 

The current ABR formats used in the industry are : 

 Smooth Streaming (Microsoft) 

 HTTP Live Streaming (Apple) 

 HTTP Dynamic Streaming (Adobe) 

 MPEG DASH (ISO) formats. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

Conference’10, Month 1–2, 2010, City, State, Country. 

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00. 

 

Emmanuel Freard 
Vi-live 

26 Boulevard Jules Ferry 
75011 Paris, France 

e.freard@vi-live.fr 
 

Raphaël Goldwaser 
France Television 

7, esplanade Henri de France 
75015 Paris, France 

raphael.goldwaser@francetv.fr 



In order to stick with our open source philosophy, we didn't want 

to use proprietary formats. MPEG DASH seems the promising 

streaming format for the coming years and therefore our preferred 

choice for this demo. The various reasons we used DASH are [1]: 

 DASH is a streaming standard based on ISO based 

media File Standard (ISO/IEC 23009-1:2014), this 

means no need for proprietary packager: FLV, ISMV, 

MOV... 

 DASH is Codec agnostic, so we can use h.264 or h.265 

in the coming years 

 DASH is Protocol agnostic: UDP, HTTP, RTMP, 

multicast are all supported 

 DASH offers the possibility of multiple representations 

(video, audio and metadata) 

4.2.2 Packager 
We needed to be fully independent to package any demo DASH 

stream and again we wanted to use Open Source tools for this 

project. The open source project GPAC was the perfect solution 

to package the MPEG DASH stream. Indeed, MP4Box[2] can be 

used to generate content conformant to the MPEG-DASH 

specification, aka ISO/IEC 23009-1 (available in ISO Publicly 

Available Standards[3]). 

4.2.3 Player 
Once we chose the streaming format, we had to find a player 

solution that would be compatible with the WebAudioAPI. So, we 

needed to be compatible with W3C standards. We knew that the 

use of Media Source Extensions would be necessary to avoid 

using a plugin in our demo application. MSE provides a 

programmatic interface to the HTML video tag so developpers 

could build robust streaming applications using only HTML and 

Javascript. There is no more need for Flash/Silverligh plugins. 

 

[Figure 2 : How work Media Source API from [4]] 

DASH JS[5] is the only DASH player project that answers to our 

needs. The Dash.js is an initiative to establish a production quality 

framework for building video and audio players that play back 

MPEG-DASH content using client-side JavaScript libraries 

leveraging the Media Source Extensions API set as defined by the 

W3C. The core objectives of this project are to build an open 

source Javascript library to playback DASH Streams. 

Once the source code forked from github, we could modify the 

player to plug DASH JS with the WebAudio API. 

4.2.4 Delivery 
The delivery workflow is quite simple as we used Amazon EC2 in 

order to store and deliver our content for the demo. Here's the 

workflow (Figure 3) : 

 

[Figure 3 : Delivery workflow] 

 Packaging[6] : 

Single Track: 

 

  

 HTTP Delivery : 

In order to use DASH JS, we need to enable CORS: 

 

 

 

 

 
 

5. EXPERIMENTATION 
We focused on various ways of sending data to a Web Audio API 

in order to collect and manage the audio buffer.  

5.1 Web Audio API only 

5.1.1 Device 
We first tried to test a simple data collection device that sends an 

XMLHttpRequest without resorting to any streaming system  

An audio file is stored on a server and we make an 

XMLHttpRequest. We define an interval that locates the 

beginning and the end of a specific section in the audio file we 

want to analyze.  

These data are in turn passed on to the Web Audio API, using a 

decodeAudioData (Figure 4). 

MP4Box -dash 10000 -frag 1000 -rap -single-

segment INPUT_FILE.mp4 

 

Header add Access-Control-Allow-Origin "*" 

Header add Access-Control-Allow-Headers 

"origin, x-requested-with, content-type, range, 

accept" 

Header add Access-Control-Allow-Methods "PUT, 

GET, POST, DELETE, OPTIONS" 

Header set Accept-Ranges bytes 

 



 

[Figure 4 : Explanatory diagram of device 5.1.1] 

5.1.2 Results 

It turns out that this solution works in certain instances only. 

When collecting raw data (e.g. a .WAV file), the decoding 

function works and allows the analysis of audio segments, even 

though the whole file has not been properly loaded.  

But audio files containing compressed data (MP3, AAC, etc.) 

cannot but loaded in such a way. Web audio API can only decode 

theses types of files if the file is fully loaded on the server.  

 

5.2 Web Audio API and Media Source API 

5.2.1 Device 
This API is used by the audio/video reader DashJS. The methods 

used by the Media Source API allow to create a data buffer but 

also to add data to it « appendBuffer » while loading. The buffer 

is injected to an element in the DOM, the <audio> tag (Figure 5). 

As seen previously, the most complex aspect when loading data 

continuously lies in the decoding. We then had to determine if 

Media Source API had this ability or if the decoding had to be 

carried out once the data are injected in the HTML5 tag.  

 

[Figure 5 : Explanatory diagram of device 5.2.1] 

5.2.2 Results 
Connecting the <audio> of the DOM seems to be the only 

possible way to collect continuously audio data while treating it 

live at the same time. We do that using Web Audio API. 

Once the connection has been established between the Web Audio 

API and the audio tag in the browser, it becomes possible to 

collect all the data collected in the <audio> tag. Any type of 

treatment becomes possible then.  

Proof of concept can be downloaded here : 

https://github.com/nums/DashJs-WebAudioAPI  

This solution has limitations nonetheless.  

- We have to use a JavaScriptNode, which leads to an added CPU 

to the browser.  

- The sound restitution is not based on the initial data. It must 

decode the <audio> tag, which creates another layer.  

- We inherit the specificities of the <audio> tag 

These aspects have been addressed more extensively here [7] 

 

Other experimentation presents a similar project that goes into 

binaural treatment in depth [11]. 

5.3 MultiTrack 
In our use case, we have consider multitrack flow. 

It is possible to encapsulate multiple audio tracks in the same 

stream, like the stereo or Dolby (Figure 5). 

 

[Figure 5 : 1 dolby audio stream]  

Dash also offers the ability to stream multiple audio tracks. In this 

way we are not forced to make a merge of all the flow of the 

concert but to broadcast each stream separately and synchronized 

them on the client side (Figure 6). 

 

[Figure 6 : 3 stereo audio stream] 

5.3.1 Limitations 
The Dash Js player does not support multi track [8].  

We investigate Media Source API : the “addTrack” method can 

not simultaneously play multiple tracks but only switch between 

different tracks. This function allows you to select the audio 

language for example.  

The "addSourceBuffer" method is also limited [9]:  

“A single SourceBuffer with 1 audio track and/or 1 video track. 

Two SourceBuffers with one handling a single audio track and 

the other handling a single video track.” 

https://github.com/nums/DashJs-WebAudioAPI


5.3.2 Implementation 
Starting from this experiment (at 5.2), it is possible to realize a 

multi-stream streaming by duplicating the audio track for each 

loading and decoding data processes. Synchronization can be 

made using loading events : for each fragment, we wait until each 

track has loaded his packet of data. The last one gives the start. 

6. CONCLUSION AND FUTURE WORKS 
After we discussed the issue directly with the developers of Web 

Audio API [7], we were pleased to learn that the working group 

has decided to improve the decoding function of the Web Audio 

API [10]. It will therefore be possible in the future to send 

compressed data directly to Web Audio API which will enhance 

our solution.  

7. REFERENCES 
[1] http://www.streamingmedia.com/Articles/Editorial/Featured-

Articles/MPEG-DASH-Industry-Forum-Releases-

Implementation-Guidelines-90527.aspx 

[2] http://gpac.wp.mines-telecom.fr/mp4box/dash/ 

[3] http://standards.iso.org/ittf/PubliclyAvailableStandards/ 

[4] https://dvcs.w3.org/hg/html-media/raw-file/tip/media-

source/media-source.html 

[5] https://github.com/Dash-Industry-Forum/dash.js/ 

[6] http://gpac.wp.mines-telecom.fr/2011/02/02/mp4box-

fragmentation-segmentation-splitting-and-interleaving/ 

[7] https://github.com/WebAudio/web-audio-api/issues/337 

[8] https://github.com/Dash-Industry-Forum/dash.js/issues/16 

[9] https://dvcs.w3.org/hg/html-media/raw-file/tip/media-

source/media-source.html#methods 

[10] https://github.com/WebAudio/web-audio-api/issues/371 

[11] http://www.bbc.co.uk/rd/blog/2014/10/under-milk-wood-in-

headphone-surround-sound 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://gpac.wp.mines-telecom.fr/mp4box/dash/
https://dvcs.w3.org/hg/html-media/raw-file/tip/media-source/media-source.html
https://dvcs.w3.org/hg/html-media/raw-file/tip/media-source/media-source.html
https://github.com/Dash-Industry-Forum/dash.js/
http://gpac.wp.mines-telecom.fr/2011/02/02/mp4box-fragmentation-segmentation-splitting-and-interleaving/
http://gpac.wp.mines-telecom.fr/2011/02/02/mp4box-fragmentation-segmentation-splitting-and-interleaving/
https://github.com/WebAudio/web-audio-api/issues/337
https://github.com/Dash-Industry-Forum/dash.js/issues/16
https://dvcs.w3.org/hg/html-media/raw-file/tip/media-source/media-source.html#methods
https://dvcs.w3.org/hg/html-media/raw-file/tip/media-source/media-source.html#methods
https://github.com/WebAudio/web-audio-api/issues/371

