
Extending Csound to the Web

Victor Lazzarini, Edward Costello, Steven Yi, John ffitch
Department of Music
Maynooth University

Ireland
victor.lazzarini@nuim.ie, edward.costello@nuim.ie, stevenyi@gmail.com,

jpff@codemist.co.uk

ABSTRACT
This paper discusses the presence of the sound and music
computing system Csound in the modern world-wide web
browser platform. It introduces the two versions of the sys-
tem currently available, as pure Javascript code, and as por-
table Native Client binary module with a Javascript inter-
face. Three example applications are presented, showing so-
me of the potential uses of the system. The paper concludes
with a discussion of the wider Csound application ecosys-
tem, and the prospects for its future development.

Keywords
Music Programming Languages; Web Applications;

1. INTRODUCTION
In a recent paper[6], we have introduced two ports of the
Csound sound and music computing system to the web-
browser platform. In the first one, the Csound codebase was
adapted and compiled to a subset of the Javascript language,
asm.js, via the Emscripten compiler [11]. The second port
employed the Portable Native Client (PNaCl)[3] technolo-
gy to provide a platform for the implementation a Csound
API-based Javascript frontend.

While the former is available for a wider range of inter-
net browsers, as it is based on pure Javascript, the second
project takes advantage of the near-native performance of
PNaCl to provide a very efficient implementation of the
system. Other significant differences between the two offe-
rings are notable: the existence of pthread support in PNaCl
versus the single-thread nature of pure Javascript; the de-
pendence on Web Audio ScriptProcessorNode and audio IO
in the Emscripten-based Csound versus the Pepper API-
based audio and threading offered by PNaCl; and finally,
the fact that the pure-Javascript implementation functions
as a wrapper to the Csound API, whereas the PNaCl versi-
on provides a higher-level Javascript frontend to the system,
with no direct access to the API.

Csound on the web browser is, therefore, an attractive opti-
on for audio programming targeting applications that run on
clients (as opposed to server-side solutions). It offers an al-
ternative to Adobe Flash (used, for instance in AudioTool1,
Patchwork2, and Noteflight3), as well as standard HTML
(used by the BBC Radiophonic workshop recreations4, Gib-
berish5, and WebPd6). It also fits with the development of
an ecosystem of applications based on Csound, which al-
lows users to easily move from one platform to another:
desktop, mobile[8][10][7], small and custom computers[1],
servers[4][5] (see also http://www.researchcatalogue.net/

view/55360/5536 for another application example), and now
web clients. This paper is organised as follows: we will start
with a brief overview of the two implementations of Csound
for web browsers; this is followed by a discussion of some
key example applications; we then explore the concept of
the Csound application ecosystem and its significance; the
final section shows the directions we intend to take the cur-
rent ideas, and how they fit in the overall development of
the system.

2. BROWSER-BASED CSOUND: OVER-
VIEW

The two implementations of Csound for web browsers use
distinct technologies. The first is a Javascript-only port,
created with the Emscripten compiler; the second is a
C/C++-based application, which uses the PNaCl toolchain,
and its runtime module, which currently exists only on Chro-
me and Chromium browsers (under most operating systems,
however iOS and Android do not yet support it).

The two implementations also have another fundamental
distinction. They operate at different levels, with regards
to their use of the Csound library:

• Emscripten Csound works at the Csound API level,
as it is effectively a translation of the original C libra-
ry to the JavaScript language. This is equivalent, for
instance, to the existing provision for the iOS and An-
droid platforms, and the new OSX application SDK.

1http://www.audiotool.com/
2http://www.patchwork-synth.com
3http://www.noteflight.com
4http://webaudio.prototyping.bbc.co.uk/
5Available at https://github.com/charlieroberts/
Gibberish, discussed in [9]
6https://github.com/sebpiq/WebPd

http://www.researchcatalogue.net/view/55360/5536
http://www.researchcatalogue.net/view/55360/5536
http://www.audiotool.com/
http://www.patchwork-synth.com
http://www.noteflight.com
http://webaudio.prototyping.bbc.co.uk/
https://github.com/charlieroberts/Gibberish
https://github.com/charlieroberts/Gibberish
https://github.com/sebpiq/WebPd


• PNaCl Csound works more as a frontend, providing
a higher-level interface to the Csound engine. This is
close to what is provided by the Csound objects in
graphic programming environments (such as PD and
MaxMSP), and the generator for LADSPA plugins.

2.1 Javascript Csound
Csound can now be run natively within any major web brow-
ser as a Javascript library using Emscripten. Emscripten can
translate from LLVM bitcode into Javascript enabling pro-
grams written in a language supported by the LLVM compi-
ler, such as C, to be compiled into Javascript and executed
on a web page. Emscripten translates the LLVM bitcode in-
to a strict subset of Javascript called asm.js7. By restricting
some features of the language, Javascript engines can per-
form optimisations not possible using standard Javascript,
which can result in improved performance.

As it is written entirely in C and has only one required
external dependency, Csound makes an ideal codebase for
adding Javascript as a build target using Emscripten. The
only external library required to build Csound is libsndfile.
This library is used by some of Csound’s built-in opcodes
and the core system for saving and opening various sound
file formats. In order to build and run Csound successfully
it is first necessary to compile libsndfile into a Javascript
library. Emscripten comes with a number of python scripts
which set the necessary environmental variables for the build
configuration and compilation of software projects into Ja-
vascript. These scripts can be used to invoke the libsndfile
configure script and make file which compile the libsndfile
source code into an asm.js library. The resulting Javascript
library can be linked to Csound during the build process.

Csound uses the CMake build system to manage the compi-
lation of binaries for supported platforms. Fortunately, Em-
scripten provides support for using CMake and comes with
a toolchain file which sets the required toolchain variables
for project compilation using Emscripten’s compiler.

There were some minor changes which had to be made to
Csound’s codebase in order to get it to compile successfully
with Emscripten. Csound has the option of using threads
for a number of operations during runtime, but as Emscrip-
ten does not support trans-compiling code bases which make
use of threads, this functionality is now removed during the
build configuration step. Additionally, many of the features
available in the Desktop build of Csound are also disabled in
the Javascript library which do not currently make sense wi-
thin a web page context such as JACK support. The plugin
opcodes such as Fluidsynth and STK are also unavailable
at this time but may be included in future releases. These
build configuration changes have been added to the main
Csound codebase and are enabled when building Csound as
a Javascript library.

The Csound library is controlled in Javascript using the pro-
vided C API. This allows external applications to compile
instruments, send control signals and access Csound’s audio
input and output sample buffers. Emscripten provides wrap-
per functions which allow Javascript variables to be used as

7http://asmjs.org/spec/latest/

arguments to Emscripten compiled C functions, for instance,
when using a Javascript string type as input to a C functi-
on taking a character array as an argument. This makes it
possible to use Csound’s C API functions directly within Ja-
vascript; however, an interface to a number of API functions
has been created which greatly simplifies using API calls in
a web page context. The interface consists of a Javascript
class CsoundObj, which offers similar functionality to the
CsoundObj classes found in the Android and iOS SDKs.

The following HTML creates a new instance of Csound,
sends an orchestra string for compilation and plays the com-
piled instrument for one second.

<!DOCTYPE html>

<head>

<title></title>

<script src="javascripts/libcsound.js"></script>

<script src="javascripts/CsoundObj.js"></script>

</head>

<body>

<script>

var csound = new CsoundObj();

csound.compileOrc("ksmps=256\n" +

"nchnls=2\n" +

"0dbfs=1\n" +

"instr 1\n" +

"a1 vco2 0.2, 440\n" +

"outs a1, a1\n" +

"endin\n");

csound.startAudioCallback();

var scoreString = "i1 0 1"

csound.readScore(scoreString);

</script>

</body>

</html>

The CsoundObj class also contains methods for sending con-
trol messages using HTML and audio input to the running
Csound instance via the Web Audio API. As Emscripten
also provides a virtual file system that compiled C code can
access, it is possible for Csound to write and play back audio
files. A number of examples demonstrating the functionali-
ty provided by the Csound Javascript API can be found at
http://eddyc.github.io/CsoundEmscripten/.

2.2 PNaCl Csound
Native Client is a recent technology developed by the Chro-
mium project, which provides a sandboxing environment
for applications running on browsers. It exists in two ba-
sic forms: one that works with natively-compiled modules
(hardware-dependent, for i386, x86 64, arm, mips, etc); and
another that is hardware independent, PNaCl. The former
is currently only enabled for Chrome-store supplied appli-
cations, while the latter can be offered on the open web.
The Csound port for Native Client has targeted the PNaCl
platform, as it provides a flexible environment for the deve-
lopment of audio-based web applications.

The PNaCl project provides a toolchain so that C/C++
applications to be easily ported to it. Code is compiled to a
bytecode representation (called a pexe module). This is then
further translated ahead-of-time to the target hardware as

http://asmjs.org/spec/latest/
http://eddyc.github.io/CsoundEmscripten/


the page containing it is loaded. Web pages containing a
PNaCl module need to be served over http, so for testing
and debugging, a minimal http server is required.

As part of the PNaCl platform, we have the Pepper API,
which fulfills three main roles here: general-purpose commu-
nication between the browser and the PNaCl code; access to
the sandbox for file IO; and audio IO. In addition to Pepper,
a number of basic C libraries are present in PNaCl, such as
pthreads, and the C stdio library. Ports of common Unix li-
braries are also available (libogg, libvorbis, libpng, libopenal,
libjpeg, to cite but a few).

PNaCl Csound is composed of two main elements:

1. the pexe module (csound.pexe): based on the Csound
library, provides means to run and control Csound, as
well as access to files in the sandbox

2. a Javascript interface (csound.js): the PNaCl Csound
functionality is exposed via a simple Javascript modu-
le, which allows applications to interface with Csound
programmatically, in similar a way to the other lan-
guage frontends like csound6˜for PD, and csound˜for
MaxMSP.

Each pexe module (one per page) runs one single Csound
engine instance. For multiple instances, we would require
separate web pages for each. A simple PNaCl Csound app-
lication to play a sine beep for 5 seconds looks like this:

<!DOCTYPE html>

<html>

<head>

<title>Beep!</title>

<script type="text/javascript" src="csound.js">

</script>

<script type="text/javascript">

// this function is called by csound.js

// after the PNaCl module is loaded

function moduleDidLoad() {

csound.Play();

csound.CompileOrc(

"schedule 1,0,5\n" +

"instr 1 \n" +

"a1 oscili 0.1, 440\n" +

"outs a1,a1 \n" +

"endin");

}

</script>

</head>

<body

<!--module messages-->

<div id="console"></div>

<!--pNaCl csound module-->

<div id="engine"></div>

</body>

</html>

There is, of course, full scope for the development of in-
teractive controls via HTML5 tags, and to integrate other
Javascript packages. A set of introductory examples and

the module programming reference is found at http://

vlazzarini.github.io

2.3 Performance
Some basic performance measurements have been made with
both Emscripten Csound and PNaCl Csound. One of the
earliest complete pieces written for the Csound language is
Trapped in Convert by Richard Boulanger, from 1977 (ori-
ginally written for MUSIC 11, total duration 4’50”). Since
this has been used for a long time as benchmark for Csound
performance, we present here some CPU measurements ta-
ken on an up-to-date Macbook running OSX (2.8GHz Intel
Core i7, quad core). The performance figures are shown in
table 1, with both PNaCl and Emscripten Csound running
on the Chrome browser.

Table 1: CPU times for Trapped in Convert (4’50”)
version Native Emscripten PNaCl

CPU time 1.109 4.388 1.771

These figures show that PNaCl Csound performance is close
to native speeds, while the pure Javascript is about four ti-
mes slower. While the PNaCl results are very impressive, the
Emscripten code also performs very well, indicating that the
main performance issues that still remain have to do with
the inadequacy of the ScriptProcessorNode to support unin-
terrupted processing (see [6] for a more detailed discussion
of these). Such figures demonstrate that Javascript Csound
will be perfectly acceptable once these issues are properly
resolved.

3. SOME EXAMPLE APPLICATIONS
The following discusses a few example client-side web app-
lications using Csound built with Emscripten or PNaCl.

3.1 Csound Notebook
The Csound Notebook8 is an online organizer for Csound
projects. Users can create Notebooks filled with Csound no-
tes, with each note being equivalent to a Csound ORC/SCO
project. The interface for note editing is designed for live
coding, such that the user incrementally edits and evaluates
Csound ORC and SCO code using a running Csound engine.
The project is written using Ruby on Rails for the server-
side, and Angular.js and PNaCl Csound for the client-side.

This project demonstrates a couple of use cases where
Csound in the browser can be applied. The first use case
is that a Csound user who works on the desktop or other
platform wants to sketch and experiment with ideas whi-
le on the go. They can organize and experiment with their
projects online and later retrieve their code to use on their
desktop system. Another use case is where a Csound user
wants to work with Csound but is on a computer where
Csound is not installed (or can not be installed, such as at a
school computer lab). With the Csound Notebook web ap-
plication, users do not require any plugins or applications
to be installed to the user’s system and can work entirely

8http://csound-notebook.kunstmusik.com, source
code available at https://github.com/kunstmusik/
csound-notebook

http://vlazzarini.github.io
http://vlazzarini.github.io
http://csound-notebook.kunstmusik.com
https://github.com/kunstmusik/csound-notebook
https://github.com/kunstmusik/csound-notebook


Figure 1: Csound Notebook

within a browser. While these use cases cater towards users
who already know Csound and want to extend their use of
the technology to the web, one can imagine that such a web
application may also serve as a way for users who do not
know Csound to try using it without having to pre-install
any applications first.

3.2 Manual integration
As the number of opcodes within the Csound language is
quite large, the Csound manual is a valuable resource for
information about which opcodes are available to the lan-
guage. Manual entries also provide examples of how to use
opcodes within an orchestra file. Although it is available in
other formats, the manual is distributed as a set of linked
HTML documents. This allows the Csound Javascript libra-
ry to be embedded within a manual page providing a me-
chanism to compile and run opcode examples directly from
the manual.

In the prototype implementation shown in (fig. 2), the manu-
al entry for the vco2 opcode was used. Instead of static text
providing an example of the opcode usage within a csd file,
two editable text fields are provided which contain exam-
ple instrument and score text. The text within each editable
text field can be compiled and sent to a running instance of
Csound using the provided Send Score and Send Instrument
buttons. There is also an on-screen piano keyboard availa-
ble, which can send score to the compiled Csound instrument
along with frequency values represented by the text macro
<KEY> within the score string.

3.3 Livecoder example
A final example of how this technology can be employed
is shown in a livecoder interactive page, which is currently
featured as a Try it online! item in the Csound community
GitHub page9 (fig. 3). This page includes, as one of its main
components, a HTML5 <textarea> element, which can be
edited to hold Csound orchestra code. The code is passed to
the csound.CompileOrc() function, which compiles it on-
the-fly. In complement to this, the page also allows users to
upload files to be used by the engine, and to enable audio
capture for realtime processing.

This example also highlights the educational aspects of the
technology, which allow the design of online, distance/blen-

9http://csound.github.io

Figure 2: Csound manual integration

ded learning initiatives for computer music and program-
ming. This is being incorporated in new courses such as
the DSP Ear-training programme[2], developed at NTNU
Trondheim, in Norway.

4. THE CSOUND APPLICATION ECOSYS-
TEM

The presence of Csound on the web, be it as a client or as a
server application, is a part of a wider application ecosystem,
which is also integrated by software running on desktop, mo-
bile, small and embedded systems, and servers. The develop-
ment of this ecosystem has been founded on the presence of
an API, which has been a key feature of the Csound system
since version 5, launched in 2006 (although earlier releases
had already shipped with an incipient API).

Users developing multimedia applications and musical works
benefit in a number of ways by using Csound. Learning one
music system that can be applied to multiple musical pro-
blem spaces increases the value of that knowledge. For ex-
ample, because Csound renders ORC and SCO code the sa-
me on each platform, users need only modify their projects
for the platform-specific parts, such as their graphical user
interfaces. This allows the user to leverage their existing
framework for musical computing and focus on the unique
features of each platform.

From the perspective of the existing Csound user, the web
offers numerous features, such as easy deployment of app-
lications, as well as long-term preservations of works. For
example, if a Csound user creates a web-based application,
they are able to share it with non-Csound users without
the end user having to install Csound or other dependen-
cies. The only requirement is that they have a browser that

http://csound.github.io


Figure 3: Csound’s Try it online!

supports Javascript and optionally PNaCl. Having easy to
reproduce projects greatly simplifies the dissemination of a
work. Also, for a Csound-only project, the project can be
preserved indefinitely by creating a web version of the piece.
Not only is the entire project preserved, but also the specific
version of Csound.

Finally, for non-Csound users looking to develop music app-
lications for the web, using Csound offers numerous benefits.
By developing a web-based music project with Csound code,
users have options to create desktop, mobile, and embedded
applications reusing their Csound code. Csound also offers
a rich library of unit generators, giving a large foundation
on which to build upon. Lastly, having a long history, users
learning Csound have a wealth of examples to draw upon
for inspiration for their own work.

5. FUTURE PROSPECTS
Csound on the web is an important platform for the Csound
community. The current Emscripten and PNaCl builds are
done using the same source code as is used for the desktop

and mobile releases. Csound development currently takes in-
to account all platforms and plans are to continue to support
each system equally. As a result, improvements made in the
main codebase are automatically shared with all platform
builds, and the entire ecosystem progresses together.

For platform-specific code, the CsoundObj API is re-written
for each platform in the native language of the platform.
This API is offered to help facilitate easier cross-platform
development. Future plans are to create a full CsoundObj
implementation for the web that will match closely in fea-
tures to the Android and iOS versions. It is also planned
to explore making CsoundObj delegate to either PNaCl or
Emscripten builds of Csound, depending on what is availa-
ble in the user’s browser. Having a unified CsoundObj API
would then allow users to depend on a single API to develop
against that would work across browsers.

6. CONCLUSIONS
The Csound computer music platform has been available for
composition, research, and musical application development
on the desktop, mobile, and embedded platforms. In this
paper, we have shown two implementations of Csound for
the web, one using Emscripten and another using PNaCl,
that extends the existing Csound ecosystem into the brow-
ser. This research explores not only the possibilities of web-
based music applications, but also the benefits of extending
existing systems to the web.

7. ACKNOWLEDGMENTS
This research was partly funded by the Program of Research
in Third Level Institutions (PRTLI 5) of the Higher Educa-
tion Authority (HEA) of Ireland, through the Digital Arts
and Humanities programme.

8. REFERENCES
[1] P. Batchelor and T. Wignall. BeaglePi: An

Introductory Guide to Csound on the BeagleBone and
the Raspberry Pi, as well other Linux-powered
tinyware. Csound Journal, (18), 2013.

[2] O. Brandtsegg, S. Saue, J. P. Inderberg, A. Tidemann,
V. Lazzarini, J. Tro, H. Kvidal, J. Rudi, and N. J. W.
Thelle. The Development of an online course in DSP
eartraining. In Proceedings of DAFx 2012, 2012.

[3] A. Donovan, R. Muth, B. Chen, and D. Sehr. PNaCl:
Portable Native Client Executables. Google White
Paper, 2010.

[4] J. ffitch, J. Mitchell, and J. Padget. Composition with
sound web services and workflows. In S. O. Ltd,
editor, Proceedings of the 2007 International
Computer Music Conference, volume I, pages 419–422.
ICMA and Re:New, August 2007. ISBN 0-9713192-5-1.

[5] T. Johannes and K. Toshihiro.
”
Và, pensiero!“ - Fly,

thought! Experiment for interactive internet based
piece using Csound6 .
http://tarmo.uuu.ee/varia/failid/cs/

pensiero-files/pensiero-presentation.pdf, 2013.
Accessed: February 2nd, 2014.

[6] V. Lazzarini, E. Costello, S. Yi, and J. ffitch. Csound
on the Web. In Linux Audio Conference, pages 77–84,
Karlsruhe, Germany, May 2014.

http://tarmo.uuu.ee/varia/failid/cs/pensiero-files/pensiero-presentation.pdf
http://tarmo.uuu.ee/varia/failid/cs/pensiero-files/pensiero-presentation.pdf


[7] V. Lazzarini, S. Yi, and J. Timoney. Digital Audio
Effects on Mobile Platforms. In Proceedings of DAFx
2012, 2012.

[8] V. Lazzarini, S. Yi, J. Timoney, D. Keller, and
M. Pimenta. The Mobile Csound Platform. In
Proceedings of ICMC 2012, 2012.

[9] C. Roberts, G. Wakefield, and M. Wright. The Web
Browser As Synthesizer And Interface. Proceedings of
the International Conference on New Interfaces for
Musical Expression, 2013.

[10] S. Yi and V. Lazzarini. Csound for Android. In Linux
Audio Conference, volume 6, 2012.

[11] A. Zakai. Emscripten: an LLVM-to-Javascript
Compiler. In Proceedings of the ACM international
conference companion on Object oriented programming
systems languages and applications, pages 301–312.
ACM, 2011.


	Introduction
	Browser-based Csound: Overview
	Javascript Csound
	PNaCl Csound
	Performance

	Some example applications
	Csound Notebook
	Manual integration
	Livecoder example

	The Csound application ecosystem
	Future prospects
	Conclusions
	Acknowledgments
	References

