
BRAID: A Web Audio Instrument Builder with Embedded
Code Blocks

Ben Taylor and Jesse Allison
Louisiana State University

Center for Computation and Technology
Baton Rouge, Louisiana

{btayl61, jtallison}@lsu.edu

ABSTRACT
Braid (Browser Audio Interface and Database) is a web
audio instrument-building environment developed with the
NexusUI platform. To identify the requirements of such an
environment, the utility of NexusUI as an audio interface en-
gine for browser-based projects is reviewed. The addition of
inline web audio within a drag-and-drop interface-building
environment is discussed. A consideration of a modified
Model-View-Controller architecture to integrate DSP code
and interface is followed by an examination of the work-
flow of designing browser-based instruments within Braid.
Finally, a database for saving and sharing web audio instru-
ments for performance or audience distribution is described.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology; H.5.2
[User Interfaces]: Graphical User Interfaces (GUI); H.5.5
[Sound and Music Computing]: Methodologies and tech-
niques; D.2.6 [Programming Environments]: Interactive
environments

General Terms
Design, Performance, Management, Human Factors

Keywords
Web audio, audio interface, MVC, instrument design, digital
audio, creative code, live-coding user interface

1. INTRODUCTION
The web browser has become a powerful tool for sonic in-

teraction [5,6,11,23], instrument distribution [3], and databases
of musical informatics [9]. Meanwhile, mobile instrument de-
sign has flourished through a mature community of designers
and toolkits [4,10,18,20]. Web Audio [21] and browser-based
instrument design have broad potential to enable the cre-
ation and sharing of cross-device desktop and mobile instru-
ments. Technical barriers to building and sharing web audio

Copyright c©2015 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors..

instruments are many: designing creative and compatible
interfaces, writing code in several languages (HTML, CSS,
JavaScript), hosting your instrument online, and connecting
your instrument to interested users.

Recent toolkits assist with the programming of web audio
instruments, most notably Gibber’s Interface.js [16]. Ad-
ditional web environments like WebPD1, Patchwork2, True
Grid3, and WebModular4 offer varying levels of customiz-
ability within Patcher-like or modular synth-like formats.

Several priorities come to the fore when attempting to
reduce barriers to web audio instrument design:

• Audio Flexibility: To maintain user access to low-
level web audio programming, allowing for full flexi-
bility and customization of DSP and synthesis ideas.
Digital audio programming environments have flour-
ished in the past two decades because they enable rich
creativity in sound design through the expressivity of
coding. Users should be able to focus on Audio DSP
code without having to worry about the fragmented
workflow and technicalities of web development.

• Interface Flexibility: To give users broad control
over their interface, meaning choices of standard and
non-standard interface components, extensibility of in-
terface components, and easy access to the interface’s
layout through a drag-and-drop system.

• Distribution and Access: To enable saving and
sharing instruments as a way to spread ideas, web au-
dio strategies, and encourage distribution of web audio
instruments.

These concerns come together to inspire Braid [2], a web
audio instrument-building environment in the browser, with
drag-and-drop interface editing, inline code editors for inte-
grating web audio, and connection to a cloud database for
storage and distribution of instruments. The Braid name is
indicative of weaving together code, interface, and distribu-
tion while maintaining the integrity of each of these tenants
of instrument design. Braid is built upon several existing
toolkits, including the Nexus User Interface platform [1] and
Gibber.lib5, and responds to instrument database ideas pre-
sented in [17].

1http://github.com/sebpiq/WebPd
2http://www.patchwork-synth.com/
3http://www.modulargrid.net/racks/synth
4http://www.g200kg.com/jp/docs/webmodular/
5http://charlie-roberts.com/gibber/gibber-lib-js/

1.1 Nexus User Interface
Nexus User Interface (NexusUI) is a library of multipur-

pose HTML5 interface widgets developed previously and de-
scribed in ”Simplified Expressive Mobile Development with
NexusUI, NexusUp, and NexusDrop” [19]. The NexusUI
project includes integration with several server paradigms
that send Open Sound Control [22] data to other audio
applications, as well as providing editable JavaScript call-
back functions which can enact JavaScript and web audio.
NexusUI is touch-compatible and designed especially for use
with mobile devices. See [19] for a more in-depth description
of NexusUI.

1.1.1 Interface Widgets
NexusUI includes many standard electronic music con-

trol interfaces including buttons, toggles, dials, sliders, and
multisliders (see Figure 1). The UI library also includes
more complex and mobile-specific control interfaces such as
multitouch controls, tilt sensors, sequencers, and animated
physics objects. Each widget is drawn upon its own HTML5
canvas which can be scaled and positioned with CSS. To co-
ordinate and manage widgets, NexusUI instantiates a cen-
tral object, defined as nx, which provides shared functions
and which can create, monitor, and remove widgets dynam-
ically.

Figure 1: Five NexusUI widgets

1.1.2 NexusDrop Interface Builder
NexusDrop is a drag-and-drop editor for NexusUI which

opens the platform to a wider userbase; no knowledge of
web programming is necessary. Interfaces built with Nexus-
Drop send OSC to Max/MSP or another audio environment
when hosted on a local server. NexusDrop interfaces can
be downloaded as HTML, but cannot be saved online for
further editing.

1.1.3 Web Audio Usability Concerns
NexusUI has far-reaching applications as an interface li-

brary for web audio projects. Each widget’s programmable
callback function allows custom JavaScript including web
audio to be executed using the widget’s data output. How-
ever, a considerable drawback of the NexusDrop drag-and-
drop interface builder is its lack of integration with web au-
dio. NexusDrop is designed as a prototyping environment
for mobile interfaces that send OSC or ajax to other au-
dio applications. Since NexusDrop does not involve coding,
using it to control Web Audio must be done in a circuitous
route by downloading the HTML page and then writing web
audio into it. Any updates to the UI at a later time require
manually creating the new UI code or recreating, reexport-
ing and importing the web-audio code into the updated in-
terface. While NexusDrop is a powerful interface tool when
used as a control for other audio applications, significant
changes are required to make it useful for creating web-audio
based instruments.

2. BRAID: EMBEDDING CODE EDITORS
Built atop NexusDrop, Braid enables embedding web au-

dio code blocks within widgets in a drag-and-drop environ-
ment. Like other browser-based audio coding environments
such as Gibber [7] and Lich.js [14], audio code is written di-
rectly into the browser. Unlike those environments, the code
is predominantly integrated with a visual control interface.
This is accomplished through a popup code editor, in which
users can write callback functions for individual widgets.

2.1 Exploring the Model-View-Controller Re-
lationship

To maintain the flexibility of both the interface and the
instrument’s signal processing, web audio code is integrated
into the interface using some aspects of a Model-View-Controller
architecture.

Model-View-Controller (MVC) is a common configura-
tion for software applications [15], while recent research by
Jamoma describes its relevance to audio applications [12]. In
an MVC design, the view (a visual representation of data),
controller (interface), and model (the underlying data) are
independent. Interaction with controller affects the model,
which updates the view. (An in-depth explanation of the
MVC relationship within audio applications can be found
in [12]). The MVC paradigm has several advantages, includ-
ing the ability to create several different views for the same
model, as well as allowing the development of the interface
(controller) and logic (model) independently and unencum-
bered by the other.

In addressing usability concerns, Braid separates the con-
troller and the model of a Braid instrument, in order to
build each in its most natural environment. In Braid, the
controller is the HTML5 interface that is built by drag-and-
drop. The model is the web audio code that is written by
the user in a code editor. A Braid user then creates custom
mappings between the controller and the model by writing
callback functions which link each controller to aspects of
the model. These mappings are written in an embedded
code editor connected to each interface object. In this way,
the controller and the model can each be edited indepen-
dently in their logical environment: a drag-and-drop view
and a line-by-line DSP code editor.

In contrast, an example of a less-separate MVC architec-
ture in web audio is Patchwork, in which DSP functions are
tied to specific user interfaces, and their arrangement may
affect both the DSP model and the controller. To a Patch-
work user, the DSP model and the interface controller are
inseparable; when a different DSP module is inserted in the
chain, the model, view, and controller aspects all change
thereby conflating the interface and the underlying audio
processing.

While an interface like Patchwork’s is useful for easy patch-
ing and prototyping, we designed Braid with more indepen-
dence between controller design and model design in order
to encourage more diverse relationships between controllers
and models, to maintain the creativity of web audio coding,
and to offer intuitive drag-and-drop creation of the controller
interface.

2.1.1 Field
An interesting reference for Braid is the creative coding

Figure 2: Braid

environment Field6, which uses a related system of attaching
code to visual items within a drag-and-drop environment.
An example of the utility of this approach within Field is the
ability to draw a shape with the mouse and then algorith-
mically multiply it in a code editor. The Field environment
keeps both the visual and programmatic editors visible and
continuously interactive, creating a hybrid working space in
which neither aspect is more focal.

2.2 Legibility
While full MVC separation has its aforementioned bene-

fits, Braid uses a more visually-integrated system in order to
increase readability during the design process. Braid helps
users visualize the association between interface elements
and callback code, as opposed to keeping all code in a single
document that is visually divorced from the interface. For
example, we take a different approach from Gibber’s declar-
ative interface building, which are organized in a single cod-
ing window. Braid’s approach puts more visual emphasis on
the interface and less on the UI coding process.

2.3 Workflow
Braid is developed partially in response to experiences

teaching NexusUI and Gibberish in workshops to secondary
school students. While Gibberish was found to be an engag-
ing method of teaching coding principles, teaching a full web
development workflow including HTML5, CSS, JavaScript,
web audio and user interface construction was too broad.
Streamlining the NexusUI-Gibberish development process
into one language (JavaScript) and one window (Braid in a
browser) removed several technical barriers while retaining
the same flexible product: a web audio instrument playable
on mobile devices.

6http://openendedgroup.com/field/

3. DESIGNING BRAID INSTRUMENTS
NexusUI widgets are added to an instrument through drag-

and-drop. Widgets can be resized, styled, renamed, or deleted
after being added to the page. The nx.add(type) function
handles adding widgets to the page and the Widget.destroy()
function erases them and automatically removes any event
handlers for the object (including accelerometer or anima-
tion events). Widgets may be highlighted, moved and deleted
in groups. When an interface layout is complete, an edit-
mode, performance-mode paradigm similar to Max or Pure
Data lets users toggle between an editable interface and a
performable interface.

3.1 Global and Local Code Blocks
While much audio code in Braid is executed by interface

widgets, some code may not be associated with a widget, or
may be desired to be executed only once. A division of web
audio code into two types of code arises from the following
use case of a simple theramin-like sine oscillator.

var a = new Sine({frequency: 440})

a.frequency = newValue;

The first line of code—a definition of a sine oscillator us-
ing Gibber.Lib—should be executed once to initialize the
instrument. The second line of code may be executed each
time a frequency change is desired, and would most likely
be responding to an interface widget in Braid. To accom-
plish the attachment of certain web audio code to interface
widgets, while maintaining the ability to write global audio
code which initializes an instrument, Braid separates web
audio code into two types: global code and local callback
code.

• Local Callback code is attached to a specific wid-
get and executed each time that widget is interacted

with. Local code might involve setting the frequency
or amplitude of an existing oscillator.

• Global code is executed once when an instrument is
loaded or when an instrument’s audio is reset manually
by the user. This may contain code such as initializing
oscillators, samples, or audio effects.

We find these two genres of code to require different in-
terfaces within Braid.

3.1.1 Local Callback Editor
Each widget provides access to a code window for audio

callback code specific to the widget. This code editor ap-
pears when an object receives focus, and disappears when
the widget is blurred (no longer selected). Code written into
this editor executes each time the widget’s values change,
generally after touch, move, release, or animation events.
Values of the widget’s current state are accessible in the
function via the data argument, which is an object with
properties specific to the widget. For example, the data ob-
ject of a 2D position slider has two properties: data.x and
data.y. If a widget has only one value, such as the dial
widget’s value, data will be a number equal to that value.
Figure 3 illustrates a dial’s callback editor.

Figure 3: Pup-up Callback Editor

3.1.2 Global Audio Code Editor
A larger code window is always accessible and can contain

global code. Run and Reset buttons let the user start and
stop web audio code after making edits. Global code is also
automatically run when loading a saved instrument in per-
formance mode (see Recalling Instruments), so that instru-
ments can be immediately performed with when launched.
Braid’s ability to restart audio code is made possibly with
Gibber.Lib’s Gibber.clear function, which erases all Gibber
audio processes that have been added to its scriptprocess-
ingnode. Currently, Braid does not erase or reset code writ-
ten with the Web Audio API or JavaScript that does not
envoke Gibber. Resetting and running non-Gibber global
instrument code is therefore a significant barrier to a smooth
instrument editing workflow, an issue discussed in the future
directions of this paper.

3.1.3 Interface Example
Returning to the original scenario of a simple theramin-

like instrument, the code written into the omnipresent global
code editor would be:

var a = new Sine({frequency: 440})

Figure 4: Global Audio Editor

This would initialize a sine oscillator at 440 Hz when the
global code Run button is pressed. A callback function tied
to a dial, which would control this sine tone, might be:

a.frequency = data * 1000;

The slider could then control the frequency of the sine
tone between 0 Hz and 1000 Hz.

3.2 Design on Desktop, Perform on Mobile
Braid encourages a desktop-to-mobile workflow in which

users design instruments on desktop computers with ade-
quate screen size, then load those instruments onto mobile
devices for performances that take advantage of a mobile
device’s accelerometer, touchscreen, and mobility. Instru-
ments can be loaded onto a mobile device using a custom
URL or QR code (see Recalling Instruments). To assist with
the development of instruments for mobile devices, dashed
lines in Braid outline the pixel dimensions of a few average
mobile phone and tablet sizes. These outlines can be toggled
on or off.

3.3 Additional Performance Opportunities
Beyond designing static audio interfaces consisting of but-

tons and sliders, Braid offers a few additional interface op-
portunities.

Automation Tools.
As a computer music performer, controlling generative

music processes is sometimes preferable to controlling in-
dividual widgets by hand. One drawback of bundling audio
code within individual touch-widgets is that a performer is
limited by how many fingers they can fit on the touchscreen.
To make algorithmic composition in Braid more available,
we have created tools for automating and animating individ-
ual widgets. The remix widget records other NexusUI wid-
get values into a wavetable, and allows for looping, stretch-
ing, and granular playback of the wavetable, letting users
sample and reuse widget gestures. In addition, several wid-
gets, including dial, position, and metro can use animation
for generative music.

Live Coding Interfaces.
Braid raises new strategies for live coding audio interfaces

through a combination of drag-and-drop and Gibber code
editing. For example, it is possible to add a new widget
and write its callback function mid-performance. However,
Braid is intended primarily as a web audio instrument de-
sign platform, focusing on building multitouch instruments

for mobile devices which can be saved and recalled for later
performance. Therefore, Braid does not currently take ad-
vantage of Gibber’s live coding features and does not provide
methods for initializing new global code without restarting
all audio.

Graphics.
A final, unexplored territory of Braid is its capacity to

control HTML5 <canvas> graphics using widget callback
functions. Each NexusUI widget is drawn on a canvas, so
any widget’s canvas may be used as a drawing surface. Braid
also includes a special surface widget which is blank canvas
for drawing. The following code could be added into a po-
sition widget’s callback code editor in order to draw onto a
surface.

with(surface1.context) {

fillRect(data.x, data.y, 5, 5);

}

4. DISTRIBUTING BRAID INSTRUMENTS
In ”Rapid Creation and Publication of Digital Musical In-

struments” [17] Roberts et al describe the archiving and dis-
tribution of web audio instruments via a central instrument
database. We find this to be a useful model for sharing
web audio instruments, and have implemented a database
for storing and recalling Braid instruments.

4.1 Encapsulating Interfaces as JSON
As all of the NexusUI widgets within Braid are managed

by JavaScript object instances, and each widget’s callback
code is stored as a property of that instance, the most natu-
ral export format for a Braid user interface is Javascript Ob-
ject Notation (JSON). Essential details of each widget such
as name, type, layout data, callback function, and widget
settings are stored as properties of a descriptor object, and
those widget descriptors are pushed into an array of widget
descriptors. This array of widget elements is stored along
with global audio code and global settings parameters for
the interface, and includes all details needed to reconstruct
the instrument.

{

"globalAudio":"//Global js\n\ntoggle1.val = 1;",

"elements":[

{

"type":"toggle",

"canvasID":"toggle1",

"width":50,

"height":50,

"top":45,

"left":95,

"audioString":"console.log(data);",

"settings":""

}

],

"settings":{

"colors":{

"accent":"#0af",

"fill":"#f5f5f5",

"border":"#999",

"black":"#000",

"white":"#FFF"

},

"version": {

"nexusui": "1.0.0"

"gibber": "1.1.0"

}

}

}

4.2 Sharing Instruments by Database
Braid users share their interfaces to a public repository

of instruments. Clicking on the disk icon in Braid opens
a dialog to name the interface. Once named, the interface
is stored on a public server. Any subsequent saving of the
interface requires the acceptance of a warning dialog before
overwriting the interface.

Currently, all Braid interfaces are open to the public.
Users may load, edit, and resave any interface in the database.
The openness of this approach leads to a dynamic mashup-
style folk tradition of web audio instruments. However, we
recognize the instability of interfaces within this type of sys-
tem and are considering methods to set certain interfaces as
final or non-editable before performances.

4.3 Recalling Instruments
Instruments saved to Braid may be recalled by several

methods.

By Search.
A basic search bar allows users to easily search and load in-

struments previously built in Braid. The search bar displays
a list of instruments through an autocompletion algorithm,
encouraging users to explore other instruments. A special
search page for mobile devices lets mobile users search and
load instruments without navigating the main Braid desktop
page.

By URL.
For quick access on mobile devices, in performance, or to

share your instrument through social media, each interface
can be loaded by URL, appending #uiname where uiname
is replaced by the name of the instrument. If loaded by
URL, an instrument automatically opens in performance
mode and executes its global audio.

By QR Code.
An additional tool for mass distribution of Braid instru-

ments is QR code, which can be generated at any time by a
hyperlink within the Braid editor.

5. CONCLUSIONS
By offering a new approach to web audio instrument cre-

ation and editing within a MVC paradigm, and by encourag-
ing easy access and distribution of these instruments, Braid
hopes to contribute to the dialogue surrounding modular
instrument development in web browsers. Braid’s approach
has benefits; it offers intuitive UI building, code editing,
and instrument management, and streamlines the workflow
of building web audio instruments with the NexusUI toolkit.
However, Braid also has drawbacks, including difficulties re-
initializing global code and restarting instruments, dividing
web audio code between two different code editors, and cur-
rently supporting only one web audio library, Gibber.Lib.

This approach for building and managing web audio instru-
ments incites further work in this field which can build upon
Braid’s ideas.

5.1 Future Directions
Braid is a young application and offers many further pos-

sibilities that could broaden its usability for creating and
distributing web instruments. Braid’s aforementioned draw-
backs may be addressed in the future through strategies in-
cluding compartmentally managing global audio code blocks,
running instruments in new browser windows, and support-
ing other web audio libraries. Future possibilities with Braid
also include sharing modular instrument components, and
collaborative instrument building through websockets.

Sharing Modular Audio Components.
In addition to publishing whole instruments, one future

goal is to allow users to publish interface modules that can
be included in other instruments, rather than only publish-
ing entire instruments. This might allow a user to publish a
button that makes a specific sound, which can then be added
by other users to their own instruments. Sophisticated pro-
cessing units, synthesizers, and fully functional instruments
could be published for recombination. A mashup culture or
folk tradition would be further enabled with such a usage
paradigm.

A significant difficulty in modularization is compartmen-
talizing global audio code. The global code of the module
must be integrated with the global code of any instrument
that it is added to. This will cause problems if variable
names overlap with other instruments or when adding two
or more of the same module to an instrument. Also, de-
pending on how the modules interact, the order that they
are instantiated may cause conflicts. This direction may
require a significantly more involved management of code
blocks by Braid.

Launching Instruments in Multiple Browser Windows.
Braid affords the possibility of launching multiple inde-

pendent instruments in unique browser windows when per-
forming on desktop machines. This method would have ad-
vantages in keeping the global code of each instrument sepa-
rate. However, the performer would need to focus a browser
window before interacting with it, leading to a two-click
process for the first interaction on each window. In addi-
tion, these windows would need to be made aware of each
other in order to use mouse or key event listeners in mul-
tiple windows at once. However, interfaces that use heavy
automation, rather than heavy interaction, could act in mul-
tiple browsers at once without causing frequent interaction
issues.

Database and Distribution.
The database storage and distribution model has much

room to grow. Although the simple naming and JSON stor-
age paradigm has been useful for prototyping, a number of
other fields could be used to assist in making the database
more functional. Possibilities include:

• recording the popularity of instrument through ratings
or usage

• associating a specific user with an interface, including
permissions or password protection which would be a

useful addition for keeping performance instruments in
a stable state

• sorting by the platform intended, specific objects used,
or audio processes used

• storage and recollection of presets within each Braid
UI

Web Audio Frameworks.
As a number of promising web audio frameworks and pro-

cessing units are in development, integrating support for
Tone.js [13], Flocking.js [8], and others could be pursued.
Braid could also explore the ability to load JavaScript files
dynamically in order to load libraries. Integration of other
audio APIs like Soundcloud or Freesound would open doors
for further work with recorded audio.

Collaborative Interface Building.
Finally, collaborative interface building could open a vast

territory of live interface coding possibilities for education
and ensemble work. If Braid is moved to a websocket-
enabled node.js server, groups could create and code inter-
faces as an ensemble. In this event, each user would see the
entire NexusUI interface, but would open their own callback
editors so that different users could edit unique callbacks.
This type of collaborative, live interaction with browser-
based intstrument design can and should be explored, as
software design moves to the browser and takes advantage
of what the network has to offer us.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the

Louisiana State University Center for Computation & Tech-
nology, Cultural Computing focus area, and the School of
Music. We would also like to acknowledge the support of
the Board of Regents for Mobile Initiatives.

7. REFERENCES
[1] Nexus User Interface - http://nexusosc.com.

[2] Braid, http://nexus.cct.lsu.edu/braid, October 2014.

[3] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative
performance for the masses, handling instrument
interface distribution through the web. In Proceedings
of the New Interfaces for Musical Expression
conference, 2013.

[4] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:
A mobile music toolkit. In Proceedings of the
International Conference on New Interfaces for
Musical Expression (NIME), Sydney, Australia, 2010.

[5] P. L. Burk. Jammin’ on the web - a new client/server
architecture for multi-user musical performance. In
ICMC 2000 Conference Proceedings. International
Computer Music Conference, 2000.

[6] R. Canning. Realtime web technologies in the
networked performance environment. In Proceedings of
the 2012 International Computer Music Conference,
2012.

[7] J. K.-M. Charlie Roberts. Gibber: Live coding audio
in the browser. In Proceedings of the 2012
International Computer Music Conference, 2012.

[8] C. Clark and A. Tindale. Flocking: a framework for
declarative music-making on the web. In Proceedings
of the 2014 International Computer Music Conference,
2014.

[9] A. D. Diana Young. Bowstroke database: A
web-accessible archive of violin bowing data. In
Proceedings of the 7th Annual Conference on New
Interfaces for Musical Expression, 2007.

[10] G. Essl and A. Müller. Designing mobile musical
instruments and environments with urmus. In New
Interfaces for Musical Expression, pages 76–81, 2010.

[11] M. Gurevich. Jamspace: a networked real-time
collaborative music environment. In CHI ’06 extended
abstracts on Human factors in computing systems,
CHI EA ’06, pages 821–826, New York, NY, USA,
2006. ACM.

[12] T. Lossius, T. de la Hogue, P. Baltazar, T. Place,
N. Wolek, and J. Rabin. Model-view-controller
separation in max using jamoma. In Proceedings of the
International Computer Music Conference
(ICMC-SMC), 2014.

[13] Y. Mann. Tone.js
https://github.com/tonenotone/tone.js/.

[14] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of the 14th Annual
Conference in New Interfaces for Musical Expression
(NIME), 2014.

[15] T. Reenskaug. Models - views - controllers. Technical
report, Xerox Parc, 1979.

[16] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the New Interfaces for Musical Expression conference,
2013.

[17] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer. Rapid creation and publication of digital
musical instruments. In Proceedings of the 14th
Annual Conference in New Interfaces for Musical
Expression (NIME), 2014.

[18] A. Tanaka. Mobile music making. In Proceedings of
the 2004 conference on New interfaces for musical
expression, NIME ’04, pages 154–156, Singapore,
Singapore, 2004. National University of Singapore.

[19] B. Taylor, J. Allison, Y. Oh, D. Holmes, and
W. Conlin. Simplified expressive mobile development
with nexusui, nexusup, and nexusdrop. In Proceedings
of the New Interfaces for Musical Expression
conference, 2014.

[20] F. J.-G. S. Weitzner, N. and Y. Chen. massmobile –
an audience participation framework. In Proceedings
of the New Interfaces for Musical Expression
Conference, 2012.

[21] C. Wilson, P. Adenot, and C. Rogers. Web audio api,
http://webaudio.github.io/web-audio-api/.

[22] M. Wright. Open sound control-a new protocol for
communicationg with sound synthesizers. In
Proceedings of the 1997 International Computer Music
Conference, pages 101–104, 1997.

[23] J. Young. Using the web for live interactive music. In
Proceedings of the 2001 International Computer Music
Conference, 2001.

