
Interactive Music with Tone.js

Yotam Mann
231 Bowery
2nd Floor

New York, NY
yotammann@gmail.com

ABSTRACT
This paper discusses the features, architecture and imple-
mentation of Tone.js, a Web Audio framework to facilitate
the creation of interactive music specifically suited to the
affordances of the browser.

Categories and Subject Descriptors
J.1.2 [Human-centered computing]: Web-based interac-
tion; L.7 [Applied computing]: Sound and music comput-
ing

General Terms
Documentation, Performance, Design, Human Factors

Keywords
Signal Processing, Synthesis, Effects, Music, Web Audio
API, Library

1. INTRODUCTION
Tone.js is a Web Audio framework for creating interac-

tive music in the browser. There are two expressions in that
sentence that warrant definition: a “framework” is distin-
guished from a “library” in that a framework, in addition to
functionality, prescribes a structure or architecture to the
code [10]. Tone.js provides library modules and abstrac-
tions, but also presents a way of using those modules in
the context of arranging and producing music. “Interactive
music,” according to Todd Winkler, refers to a composition
or improvisation in which a user/performer’s actions affect
music generated by a computer [19]. This broad definition
encompasses creating interactive, adaptive, and generative
music that responds to user input, which is precisely what
Tone.js was built for. Tone.js source code is available under
the MIT license on github [11].

Towards the goal of creating interactive music, Tone.js’
development was guided by three tenets: musicality (such

Web Audio Conference 2014 Paris, France
Copyright c©2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors..

as the ability to define scores and synthesizers as JSON ob-
jects with note names and rhythmic notation), modularity
(exemplified in the dozens of signal processing and synthesis
building blocks) and synchronization (the ability to use
those building blocks to coordinate sounds and events along
a shared timeline).
Tone.LFO, a low frequency oscillator, illustrates these three

ideas in a single class. The start method accepts musical
time as an argument. Tone.Time is a tempo-relative encod-
ing of time that can be used, for example, to describe a quar-
ter note duration: "4n". Every method that accepts a time
also accepts Tone.Time. Secondly, using Tone.js’ modular
signal processing components, the output of the LFO can
be scaled to any range linearly or exponentially. Whereas
detune cents might be in the range of -50 to 50 and interpo-
lated linearly, a filter cutoff frequency is perceived exponen-
tially and takes on values anywhere between 20 and 20,000.
Lastly, Tone.LFO is synchronizable to the global transport;
its start method can be triggered by a call to the transport’s
start method making it easy to start all LFO instances at
once. Additionally, the LFO’s frequency can be harmonized
to the transport’s tempo and even change when the global
tempo changes, so that a panner LFO with a speed of "2t"
(a half-note triplet) would remain in that ratio even as the
tempo curves from 120 bpm (beats per minute) to 60 bpm.

2. HIGH-LEVEL ARCHITECTURE
Tone.js’ architecture aims to be familiar to audio engineers

and musicians coming from DAWs (Digital Audio Worksta-
tions) by including features such as grid-relative timing, send
and receive buses, a master output channel, and a global
transport.

2.1 Musical Time
With Tone.Time, AudioContext time can be expressed in

tempo-relative terms that are translated into seconds with
the toSeconds method. Delay times, for example, can be
expressed in terms of beats: "4n" would translate to 0.5
seconds at 120 bpm.
Tone.Time takes on a few forms. Numbers are taken liter-

ally as seconds. Notation-style strings, inspired by Max/MSP’s
metrical timing [8], such as "8n" for an eighth-note or "4t"

for a quarter-note triplet, will be evaluated against the cur-
rent tempo to deduce the time in seconds. When repre-
sented as a colon-separated list, Tone.Time is interpreted as
“bars:beats:sixteenths”. This notation is similar to Ableton
Live’s transport time representation [4]. This sort of timing
is useful for referring to events on a longer time-scale such



as scheduling a chorus to start at measure 32: "32:0:0".
Strings ending in “hz” (Hertz) will also be converted into
seconds with toSeconds. "4hz" is equivalent to 0.25 sec-
onds.

It is often useful to schedules values relative to the current
AudioContext time. Prefixing any of the above representa-
tions with a plus sign as a string ("+") will add the Audio-

Context’s currentTime to the following value. Furthermore,
toSeconds (and any parameter which accepts Tone.Time)
can also evaluate mathematical expressions with any of the
above representations. toSeconds("(7 / 4) * 8n") equals
an 8th-note septuplet.

Most classes will defer evaluating the Tone.Time argument
until just before execution in order to reflect the current me-
ter, therefore accommodating tempo-curves and time signa-
ture changes. For example, any of the values of Tone.Envelope,
an ADSR (Attack Decay Sustain Release) envelope, can be
expressed as Tone.Time and will stay tempo-relative even as
the tempo changes.

2.2 Buses
In addition to making it easy to share a single reverb effect

across many audio nodes, buses also promote loose-coupling
between audio modules. Sending 50% of a synthesizer sig-
nal to a reverb bus, and in a separate module, receiving all
signals routed to “reverb” would be written like this:

synth.send("reverb", 0.5);

//...in a separate audio module

reverbEffect.receive("reverb");

There are a few advantages to this approach over directly
connecting synth to reverbEffect. Firstly, dependency
management is greatly simplified in that reverbEffect does
not necessarily have to be loaded and evaluated at the time
that synth is connected to the reverb bus. Additionally,
in a modularized JavaScript application without any global
objects, synth does not need to obtain a reference to rever-

bEffect, further aiding in modularization. This is particu-
larly useful during development when synth may have been
written before reverbEffect or visa versa.

2.3 Master Output
The master output is an abstraction on the native Au-

dioDestinationNode. It provides a few conveniences over
the native AudioNode: having a wrapper on the AudioDes-

tinationNode makes adjusting the global volume or muting
the entire application trivial; also, by placing a node before
the final output, global effects, compressors, and limiters can
be applied to the entire mix.

2.4 Transport
A single transport is central to many music production en-

vironments since it allows for tightly synchronized and coor-
dinated events [3, 6, 5, 8]. While many Web Audio libraries
offer a way to schedule audio events along a timeline [14,
13, 18], Tone.Transport differentiates itself in two ways: it
schedules callback functions and it allows for tempo-curves.
Similar to the browser’s native setInterval method, Tone.Tr-
ansport has a setInterval method that accepts a callback
and an interval (in Tone.Time). The callback is invoked
at the desired interval right before the time of the event
with the sample-accurate AudioContext time passed in as
the function’s argument:

Transport.setInterval(function(time){

//check application state

//trigger an event using ’time’

}, "8n"); // invoked every 8th note

For interactive music applications, just-in-time execution of
scheduled events is advantageous over scheduling events far
in advance since it allows the events to reflect the most up-
to-date application state, which may be constantly chang-
ing based on user input or other factors. Tone.Transport’s
API also includes a setTimeout method for scheduling sin-
gle events in the future relative to the current clock time,
and a setTimeline method which schedules methods along
a loop-able and seek-able global timeline.
Tone.Transport is implemented using a ScriptProces-

sorNode and a square wave OscillatorNode. The Oscilla-

torNode is set to a small subdivision of a quarter note. The
ScriptProcessorNode listens for when the oscillator crosses
above zero (a tick) at which point any callbacks that are
scheduled for that tick are invoked with the tick’s time. This
approach is similar to WAAClock [12] but adds an Oscilla-

torNode for tracking ticks instead of computing the tick time
at each onaudioprocess event. Using the OscillatorN-

ode makes it trivial to create tempo-curves where the bpm
changes gradually over time by simply invoking exponen-

tialRampToValueAtTime on the oscillator’s frequency Au-

dioParam. Using an OscillatorNode also allows for schedul-
ing the start and stop methods with sample-level accuracy.

There are some issues with this approach. Invoking de-
ferred callbacks from the audio thread introduces the poten-
tial for jitter and glitches as the audio thread is held up by
the main thread or visa versa [17], though in practice, this
has not been a significant issue. More research needs to be
done to find the right buffer amount to handle these issues.

3. LOW-LEVEL BUILDING BLOCKS
Tone.js provides dozens of classes for performing low-level

math and logic on signals. In the first example, a combi-
nation of Tone.Add and Tone.Multiply are used to scale
the range of the oscillator in Tone.LFO to any output range.
Tone.js’ signal calculations are computed at audio-rate mak-
ing them suitable to be used for controlling AudioParams.
Furthermore, none of the signal classes use any ScriptPro-

cessorNodes which makes them efficient and low-latency.

3.1 Tone.Signal
At the heart of the signal processing modules is Tone.Signal,

which provides functionality similar to the native Web Au-
dio AudioParam in that Tone.Signal can be connected to
an AudioParam to give audio-rate control over parameters.
It provides advantages over the native AudioParam in that
mathematical and logical operations can be applied to the
signal before being connected to an AudioParam. Addition-
ally, a single Tone.Signal can be connected to multiple Au-

dioParams, allowing for synchronized automations. Just like
the AudioParam, Tone.Signal has methods such as setVal-
ueAtTime and linearRampToValueAtTime which allow for
sample-accurate automation of the signal’s output.
Tone.Signal is implemented using a constant signal gen-

erator connected to a GainNode. The signal generator out-
puts an value of 1 at audio-rate that can be scaled to any
value using the GainNode’s gain AudioParam. Setting the
gain to 20, for example, would make the output 20. The



Input

Output

Tone.GreaterThanZero

Tone.Route

Tone.Negate

gate input 0 input 1

Figure 1: Block diagram of Tone.Abs

constant signal generator of Tone.Signal is created by run-
ning an OscillatorNode through a WaveShaperNode; the
WaveShaperNode’s curve is set to output 1 for all inputs.
This generator could also be written with a short, looped
AudioBuffer. Further research is needed to see which per-
forms better across various platforms. As an optimization,
the Tone.Signal class shares a single, static generator and
therefore each instance of the class is only composed of one
GainNode.

3.2 Math
Math operators in Tone.js make use of the GainNode’s na-

tive ability to sum and multiply signals. In the Web Audio
API, signal is summed when two AudioNodes are connected
to the same node [2]; Tone.Add uses a Tone.Signal con-
nected to a GainNode to add a value to any signal connected
to the same GainNode. Tone.Multiply, is similarly simple.
Again, using the GainNode’s gain AudioParam, the incoming
signal can be multiplied by a number or signal-rate value.

3.3 Logic
Tone.js includes a-rate boolean operators such as Tone.Equal,

Tone.GreaterThan, and Tone.LessThan. These operators
rely heavily on the WaveShaperNode. The WaveShaperNode’s
curve in Tone.EqualZero outputs 1 when the input is 0 and
outputs 0 for all other inputs. A Tone.Multiply with a large
value is connected before the WaveShaperNode to ensure that
small input values are scaled far from zero to avoid interpo-
lation by the WaveShaperNode. Tone.Equal is implemented
using Tone.EqualZero with Tone.Subtract to subtract a
value from the input before comparing it to zero.

3.4 Routing
It can be useful to conditionally route audio to or from

another AudioNode; Tone.Route and Tone.Select do just
that. Tone.Route has any number of inputs and only one
output. By setting its gate to an input number, Tone.Route
selectively routes that input to the output, stopping all oth-
ers. Tone.Select routes a single input to one of the outputs
depending on the value of the Select’s gate.

Logic and routing operations can be combined in order to
perform operations like absolute value. Tone.Abs tests if the
incoming signal is less than zero, in which case it routes the
negated signal to the output, otherwise the output is equal
to the input (see Figure 1). Tone.Min and Tone.Max work
in similar ways.

3.5 Native vs ScriptProcessorNode

Web Audio’s ScriptProcessorNode is one of the most
powerful features of the API, but it is not ideal for interac-
tive music. Firstly, the ScriptProcessorNode has more la-
tency than the native nodes. In Google Chrome’s implemen-
tation, the input and output of the ScriptProcessorNode

are double buffered [17]. This can lead to a quite noticeable
delay when the buffer size is large which can detract from
the immediacy of interaction and degrade performance [15].
While a single ScriptProcessorNode on its own does not
contribute a noticeable amount of latency, if Tone.js’ mod-
ular architecture was implemented entirely with Script-

ProcessorNodes, the latency would add up to a significant
amount. For example, if each of the half-dozen signal pro-
cessing stages of Tone.StereoWidener was composed of a
ScriptProcessorNode instead of native nodes, the latency
for that effect alone would be around a quarter-second (as-
suming a frame-size of 1024 and a sample rate of 44100kHz).
Also, while the non-ScriptProcessorNodes are implemented
in low-level languages like C/C++, the ScriptProcessorN-

ode executes JavaScript which can be much slower than a
native language. For these reasons, Tone.js goes to great
lengths to find native workarounds for using the Script-

ProcessorNode.

4. INSTRUMENTS AND EFFECTS
Tone.js combines low-level components into synths and

effects. At the time of this writing, Tone.js includes eight
instruments including an FM (Frequency Modulation) syn-
thesizer and a Karplus-Strong plucked string modeling syn-
thesizer. Tone.js also has a myriad of audio effects including
Tone.PingPongDelay, Tone.Freeverb, and Tone.BitCrusher.
Like the signal processing components, all instruments and
effects adhere to Tone.js’ philosophy of avoiding ScriptPro-

cessorNodes for the best latency, performance and scale-
ability.

4.1 Presets, States and Scores in JSON
The states of instruments and effects in Tone.js can be set

through JSON (JavaScript Object Notation) descriptions in
the constructor and set method.

var fastPanner = new Tone.AutoPanner({

"frequency" : "16n",

"type" : "square"

});

The ability describe a sound generator/processor in an in-
termediary format like JSON makes it simple to create and
share presets. Additionally, it can aid in decoupling the pro-
cess of building sound generators and composing with those
sounds. Using JSON Objects to hold state also opens up the
possibility of applying transformations to the state before
setting it, such as interpolating between presets or transpos-
ing all the values of the states. The JSON descriptions in
Tone.js are inspired by the unit generator/score file distinc-
tion introduced in MUSIC by Max Mathews which has been
a feature in many subsequent computer music languages [1].
An example “orchestra” (to use Csound terminology) with
Tone.js might be a Tone.PluckSynth connected through a
Tone.Chorus to the master output. The “score” part of the
code for these components might look something like:

pluckSynth.set({

"attackNoise" : 0.8,



"resonance" : 0.6

});

chorus.set({

"rate" : 0.75,

"delayTime" : 3.5,

"depth" : 0.7,

});

Scores are another JSON-based description used in Tone.js.
A score can be parsed by Tone.Note.parse which schedules
note events along the transport’s timeline. Scores are rep-
resented in JSON with the name of the instrument or chan-
nel as the object’s key and an array of events as the value.
Instruments and other components can then listen for these
events using Tone.Note.route. Tone.Note.route is invoked
with a score’s keys and an event callback function. The note
description in scores is flexible; the only requirement is that
it has the time of the event. Additional event data such as
note values, durations, etc will be passed to the callback.

var score = {

"drums" : [["0:0","kick"],["0:1","snare"],...

};

Tone.Note.parse(score);

Tone.Note.route("drums",function(time,sample){

//play drum sample at time

});

5. COMPARISON WITH OTHER LIBRARIES
Comparisons can be drawn between frameworks that pro-

vide similar functionality such as WAAX [7], Gibberish [13],
and Lissajous [14]. These three libraries include a suite of
synthesizers and effects as well as their own event schedulers.
Tone.js distinguishes itself in three ways. Firstly, Tone.js
makes extensive use of Tone.Signal which allows for simple,
sample-accurate synchronization of multiple AudioParams.
For example, when setting the frequency in WAAX’s FM
Synthesizer (FMKey7), the frequency value needs to be ap-
plied to the modulator, carrier, and modulator gain (which
controls modulation index), but in Tone.js’ implementation
only a single frequency signal needs to be changed; this is
achieved by routing the frequency signal through the mod-
ulation index and harmonicity multipliers before connecting
them to the carrier and modulators’ frequency AudioParams.
This signal processing approach is most similar to Audiolet
by Joe Turner [16]. Similar to Tone.js, Audiolet also pro-
vides operators like Modulo and Multiply but implements
them with the ScriptProcessorNode as opposed to Tone.js’
use of native components exclusively. This signal-centric ap-
proach enables LFOs and other control signals to be easily
applied across the library. Tuna.js [9] has a similar focus on
enabling LFO control over as many parameters as possible,
but, Tuna.js relies on individual ScriptProcessorNodes for
each LFO which can degrade performance and latency in
large applications [15].

Secondly, Tone.js can be easily intermixed with outside
libraries and modules. Compared to Gibberish, in which
all audio processing is done in a single ScriptProcessorN-

ode making it difficult route its audio through other Web
Audio components, Tone.js allows users to set the Audio-

Context to make it easy to interconnect Tone.js’ modules
with other libraries and AudioNodes. Lastly, Tone.js’ event
scheduler uses JavaScript callbacks to schedule events. Lis-
sajous, for example, abstracts away the sequencer callbacks

and only gives users the ability to schedule specific events
like note triggering. Tone.js’ more flexible approach to event
scheduling allows anything to be scheduled from the call-
back. While Lissajous most easily accommodates loop-based
events, Tone.js can handle single event, repeated events, and
events along a timeline. Also, of the frameworks mentioned,
Tone.js’ oscillator-based scheduler is the only one that is ca-
pable of smooth tempo-curves. These features give Tone.js
the flexibility to create a wide range of music.

6. FUTURE WORK AND CONCLUSION
Aside from producing additional effects, instruments and

signal processing classes, future work on Tone.js will con-
tinue to focus on aiding musicians and composers to make
music in the browser. One hurdle in developing music in the
browser with Tone.js is the lack of GUIs for exploring and re-
fining musical and sonic parameters. Such tools could export
their parameters as JSON which could be saved and incor-
porated into the composition during development. Another
area to explore is using Tone.js as tool for collaboration and
jamming. This might take the form of streaming events over
WebSockets or sending audio using WebRTC. Challenges in
this area include synchronizing transports across clients and
network latency.

The introduction of the Web Audio API makes the browser
a unique musical medium in that it is the means of produc-
tion and distribution in one. Tone.js aims to facilitates mu-
sic which takes advantage of the affordances of the browser
to create interactive, collaborative, and generative music in
real-time with a user.

7. ACKNOWLEDGMENTS
The author would like to thank Sarah Rothberg, Adrian

Freed, Luisa Pereira, Kevin Siwoff, Jason Sigal, Chris Deaner,
and Allison Wood for their contributions to this paper and
Tone.js.

8. REFERENCES
[1] MUSIC-N. http://en.wikipedia.org/wiki/MUSIC-N.

Accessed: 2014-10-21.

[2] Web Audio API: W3C Editor’s Draft 22 October
2014. http://webaudio.github.io/web-audio-api/
#summing-inputs. Accessed: 2014-10-25.

[3] Ableton. Ableton Live 9.
https://www.ableton.com/en/live/. Accessed:
2014-10-08.

[4] Ableton. Ableton Live Manual: Arrangement View.
https://www.ableton.com/en/manual/

arrangement-view/#transport. Accessed: 2014-10-09.

[5] Apple. Logic. https://www.apple.com/logic-pro/.
Accessed: 2014-10-08.

[6] Avid. Pro Tools. http:
//www.avid.com/us/products/family/pro-tools/.
Accessed: 2014-10-08.

[7] H. Choi. WAAX Github Repository.
https://github.com/hoch/WAAX. Accessed:
2014-10-26.

[8] Cycling74. Tutorial 19: Timing.
http://www.cycling74.com/docs/max5/tutorials/

max-tut/basicchapter19.html. Accessed: 2014-10-08.



[9] Dinahmoe. Tuna.js.
https://github.com/Dinahmoe/tuna. Accessed:
2014-10-09.

[10] jAndy. What is the difference between a Javascript
framework and a library?
http://stackoverflow.com/a/11576088. Accessed:
2014-10-07.

[11] Y. Mann. Tone.js Github Repository.
https://github.com/TONEnoTONE/Tone.js. Accessed:
2014-10-27.

[12] S. Piquemal. WAAClock.
https://github.com/sebpiq/WAAClock. Accessed:
2014-10-09.

[13] C. Roberts. Gibberish.js.
https://github.com/charlieroberts/Gibberish.
Accessed: 2014-10-09.

[14] K. Stetz. Lissajous.js.
https://github.com/kylestetz/lissajous.

Accessed: 2014-10-09.

[15] N. Thompson. You Don’t Need That ScriptProcessor.
https://medium.com/web-audio/

you-dont-need-that-scriptprocessor-61a836e28b42.
Accessed: 2014-10-21.

[16] J. Turner. Audiolet Github Repository.
https://github.com/oampo/Audiolet. Accessed:
2014-10-26.

[17] C. Wilson. web-audio-api Github issue: Worker-based
ScriptProcessorNode. https://github.com/WebAudio/
web-audio-api/issues/113#issuecomment-54642502.
Accessed: 2014-9-05.

[18] C. Wilson. Web Audio Metronome.
https://github.com/cwilso/metronome. Accessed:
2014-10-09.

[19] T. Winkler. Composing Interactive Music: Techniques
and Ideas Using Max. The MIT Press, 2001.


